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Vorwort

o

., The true logic of the world is in the calculus of probabilities.

Diese Worte vom englischen Physiker James Clerk Maxwell aus dem 19. Jahrhundert
entsprechen einem Weltbild, dass bereits Erfahrungen mit Ungewissheiten in der Natur
gemacht hat, die sich nur mehr durch stochastische Begriffe formulieren lassen. Die
Wabhrscheinlichkeitstheorie wurde so seit ihrer Entstehung im 17. Jahrhundert
weiterentwickelt und axiomatisiert; sie présentiert sich heute als reichhaltige Theorie zur

Modellierung und Formalisierung von Ungewissheit in verschiedenen Formen.

Im Jahre 1965 veroffentlichte der Elektrotechniker Lofti Zadeh einen Artikel namens
,Fuzzy Sets*’ indem er die fuzzy Theorie begriindete und erstmals das Konzept einer
unscharfen Menge vorstellte. Diese Theorie unscharfer Mengen erweist sich heute als
niitzliches Instrument, Vagheit als spezielle Form von Ungewissheit zu modellieren. Bei der
Begriindung der fuzzy Theorie durch Zadeh motivierte ihn dabei die Vorstellung diese neue
Theorie fiir die Regelungstechnik nutzbar zu machen und Expertenwissen, das durch
umgangssprachliche und oftmals vage Regeln ausgedriickt wird, fiir Entscheidungen in

technischen Bereichen zu verwenden.’

Die Anwendungsgebiete der Wahrscheinlichkeitslehre und der fuzzy Theorie lassen als
Theorien der Ungewissheit Uberschneidungen zu, und so gerieten von Beginn an Vertreter
der Wahrscheinlichkeitslehre und Anhénger der fuzzy Theorie miteinander in Konflikt und
polemisierten gegeneinander. So schreibt beispielsweise der kanadische Mathematiker

William Kahan fuzzy Logik sei das Kokain der Wissenschaft und sei gefahrlich und falsch.*

Wahrscheinlichkeitslehre und fuzzy Theorie versuchen nicht nur beide Ungewissheit zu
modellieren, sie weisen auch auf anderen Ebenen starke Ahnlichkeiten auf. Beides sind
Theorien, deren Elemente mit Malen im Wertebereich zwischen 0 und 1 gemessen werden:
In der Wahrscheinlichkeitstheorie werden Ereignissen Grade der Wahrscheinlichkeit
zwischen 0 und 1 zugeordnet. In der Theorie der unscharfen Mengen werden Elementen einer

Menge Zugehorigkeitsgrade zwischen 0 und 1 zugeordnet. Weiters gibt es Versuche sowohl

" Hajek S 362

2 Vgl. Zadeh 1965

* Vgl. Avenhaus / Seising S 270
* Vgl. Kosko 1995 S 13



Zugehorigkeitsgrade als auch Wahrscheinlichkeiten als Quotienten von positiven

Eigenschaften durch mégliche Eigenschaften darzustellen.’

In diesem Sinne ist es durchaus berechtigt nach Zusammenhéngen zwischen der fuzzy
Theorie und der Wahrscheinlichkeitslehre zu suchen, wie es in dieser Arbeit geschehen soll:
Es wird Vagheit als spezielle Form von Ungewissheit ndher analysiert werden und mittels der
fuzzy Theorie zu modellieren versucht. Weiters wird zu Beginn dieser Arbeit eine
grundlegende Einfiihrung in die Theorie unscharfer Mengen gegeben, die in spéterer Folge
durch eine weitere Interpretation unscharfer Mengen erweitert werden wird. Auf diese
Interpretation aufbauend werden einige Malle und Theoreme eingefiihrt, mit deren Hilfe
gezeigt werden wird, dass die Wahrscheinlichkeitslehre innerhalb der fuzzy Theorie

deduzierbar ist.

Im letzten Kapitel wird durch verschiedene Argumentationen erldutert, warum fuzzy

Theorie und Wahrscheinlichkeitslehre nicht dasselbe sein konnen.

In den letzten Jahren hat die fuzzy Theorie in technischen Bereichen wie der
Regelungstechnik seine Niitzlichkeit bewiesen. In vielen technischen Produkten kommt sie
zum Einsatz und ist daher auch Gegenstand vieler Studienrichtungen technischer
Universititen. Es lohnt sich jedoch auch die philosophische Betrachtung dieser Theorie, wie
es hier geschehen soll. Auf Details aus den Ingenieurswissenschaften wurde deshalb hier

bewusst verzichtet und eine rein logisch-philosophische Analyse gewéhlt.

°Vgl. Wang 1993 S 8f



1 Strukturelle Einfihrung in die fuzzy Theorie

, Eine Menge ist eine Zusammenfassung bestimmter, wohlunterschiedlicher Dinge
unserer Anschauung oder unseres Denkens, welche Elemente der Menge genannt werden,
zu einem Ganzen®

Mit diesen Worten definierte Georg Cantor 1895 den Begriff einer Menge und schuf
damit die Mengenlehre, welche sich als &ufBerst fruchtbares Mittel zur Konsolidierung der
Mathematik erwiesen hat. Doch schon bald erwies sich der obige Mengenbegriff als zu
allgemein und es zeigte sich, dass dieser Widerspriiche — wie die Russellsche Antinomie —
innerhalb der Theorie zuldsst. Als Ausweg wihlte man einen axiomatischen Zugang, welche
den Vorteil hat, nicht genau beschreiben zu miissen, was eine Menge ist — eine Menge ist
einfach ein Objekt, das sdmtliche Mengenaxiome erfiillt. Ein weiterer Ausweg konnte eine
mehrwertige Logik sein, in der sich der Widerspruch nicht ergibt, wie im Kapitel 3.5.1

ersichtlich gemacht werden wird.’

Der Prozess der Mengenbildung als Zusammenfassung verschiedener Elemente ist
jedem von der Schulzeit an geldufig. Man bildet Mengen, indem man deren Elemente aufzéhlt
oder eine bestimmende Eigenschaft (Pradikat) anfiihrt, die diejenigen Elemente herausfiltert,
die diese Eigenschaft erfiillen. Adolf Fraenkel, Mitbegriinder des géngigen Axiomensystems

von Zermelo-Fraenkel, bemerkt dazu folgendes:

., Eine Menge M ist definiert oder ,,existiert", sobald von jedem beliebigen Ding feststeht,
ob es Element von M ist oder nicht. “®

Daraus ergibt sich, dass fiir je zwei gegebene Objekte x und y feststeht, ob x Element
von y ist oder nicht; man schreibt: xey bzw. x¢y. Eine dritte Moglichkeit wird aufgrund des
Prinzips des ausgeschlossenen Dritten in der klassischen Logik ausgeschlossen. Formal l&sst
sich eine Menge M also schreiben als eine Zusammenfassung verschiedener Elemente, fiir die
eine bestimmte Eigenschaft F erfiillt ist, d.h. M = {x | F(x) }. Durch die binidre Logik, auf die
die Mengenlehre zuriickgreift, gilt stets: x erfiillt F oder x erfiillt F nicht. Es lédsst sich somit
eine Menge M® definieren, die all diejenigen Elemente enthilt, welche die bestimmende

Eigenschaft fiir M nicht erfiillen und das Komplement von M genannt wird; man schreibt M©

% Deiser 2002 S 13
7 Vgl. Gottwald 1989 S 291ff
8 Fraenkel 1927 S 2



= {x | =F(x) }. Es gilt also stets x ist entweder in M oder in M® enthalten, aber nicht in beiden

zugleich, also M N M€ = {} und M U M€ = X fiir die Grundmenge X.’

In der klassischen Mengenlehre gelten also Analoga zu Prinzipien der klassischen
Logik, wie dem Satz vom Widerspruch und dem Prinzip vom ausgeschlossenen Dritten, die
beide auf das Zweiwertigkeitsprinzip der bindren Logik beruhen, das besagt, dass jede
Aussage genau einen der beiden Wahrheitswerte wahr oder falsch besitzt'’. Das Prinzip vom
ausgeschlossenen Dritten ldsst sich folgendermaBen formalisieren: A v —A ist eine
Tautologie; hingegen bedeutet der Satz vom Widerspruch: A A —A ist eine Kontradiktion.
Diese zwei fundamentalen Prinzipien gehen auf Aristoteles zuriick, der in seiner Metaphysik

bemerkt:

,,Unter den Prinzipien des Beweisens verstehe ich die gemeinsamen Grundsdtze, auf
Grund deren man tiiberall einen Beweis fiihrt, z.B. den Grundsatz, dafs man notwendig
Jjegliches entweder bejahen oder verneinen muf3, und daf} es unméoglich ist, dafs eines und
dasselbe zugleich sei und nicht sei... “!!

Dies ist ein wesentliches Charakteristikum der klassischen Mengenlehre und Logik und
es zeigt sich hier ein wesentlicher Unterschied zum Begriff der unscharfen Mengen in der
Fuzzy Theorie. Wéhrend klassische Mengen ein Element entweder enthalten oder nicht, ist
die Zugehdrigkeit eines Elements zu einer fuzzy Menge kontinuierlich darstellbar. Uber so
genannte Zugehorigkeitsfunktionen, welche im folgenden Kapitel noch genauer erldutert
werden, ldsst sich ein Element zu einer Menge mit jedem beliebeigen Wert zwischen 0 und 1
zuordnen. Fine unscharfe Menge stellt somit eine Erweiterung des klassischen
Mengenbegriffes dar, da dieser im ersteren enthalten ist, wenn man die Eigenschaft ,,ist

Element von“ mit der Zugehorigkeit 1 und deren Gegenteil mit der Zugehdrigkeit 0 versieht.

Mit der fuzzy Theorie gelingt es nun, die Abgrenzung der Elemente einer Menge von
denjenigen, die keine Elemente dieser Menge sind, kontinuierlich zu ziehen. Gerade diese
Moglichkeit, ein Objekt einer Menge nicht ganz oder gar nicht zuordnen zu miissen, sondern
in seiner Zugehorigkeit zur Menge Zwischenwerte annehmen zu konnen, verleiht der Fuzzy

Theorie die Moglichkeit die natiirliche Welt addquater zu beschreiben.

Da in der klassischen Logik seit Aristoteles das Prinzip vom ausgeschlossenen Dritten
angenommen wird, ist diese kontinuierliche Grenzziehung eine vollig neue Sichtweise fiir
Logiker. Sie erlaubt, Alltagsbegriffe besser modellieren zu konnen, da eine mathematische

Definition dieser Begriffe den Alltagsvorstellungen oft widerspricht. In der klassischen Logik

? Vgl. Hasse 1989 S 14f
19 Vgl. Malinkowsi 1993 S 309
' Aristoteles Metaphysik S 40



ist ein Mensch entweder schon oder er ist es nicht — dies scheint unserer Auffassung von
Schonheit zu widersprechen. Mit Hilfe der fuzzy Logik lassen sich differenziertere
Zuweisungen von Schonheit treffen, bei denen man nicht Menschen als ideal schon oder nicht

einstufen muss.

Der polnische Logiker Jan Lukasiewicz, der als einer der ersten das Konzept einer
zweiwertigen Logik verlieB und eine mehrwertige Logik definierte, die mit dem
aristotelischen Satz vom Widerspruch bricht, beschreibt den Moment der Aufgabe dieses

Postulats folgendermalfen:

,, Wenn ich mich nicht irre, so néhert sich uns der dritte Moment in der Geschichte des
Satzes vom Widerspruch, der alte Versdumnisse behebt. In der Entwicklung der Logik
kommt dieser Zeitpunkt ebenso notwendig, wie es notwendig in der Entwicklung der
Geometrie der Zeitpunkt der Revision des Parallelen-Axioms war. Aristoteles hat die
Anfinge der Logik geschaffen, und jeder Anfang ist unvollkommen. "

Lukasiewicz tritt fiir eine umfangreiche Diskussion ein, die iiberpriifen soll, ob der Satz
vom Widerspruch oder das Prinzip vom ausgeschlossenen Dritten wirklich evident und

unumgénglich sind oder nicht:

., Erst dann wird sich zeigen, welchen Stellenwert der Satz vom Widerspruch unter den
anderen logischen Regeln einnimmt, worauf sich seine Geltung und sein Wert griinden,
wie weit seine Anwendbarkeit reicht; dann wird es klar werden, ob dieser Satz wirklich
der héchste von allen ist und als Grundstein fiir unsere gesamte Logik angesehen werden
kann, oder ob man ihn auch umwandeln, beziehungsweise gar, ohne ihn zu
beriicksichtigen, ein System einer nichtaristotelischen Logik entwickeln kann, so
wie durch die Umwandlung des  Parallelen-Axioms ein  System  der
nichteuklidischen Geometrie entstand. “"

Jan Lukasiewicz hat somit zu Beginn des 20. Jahrhunderts erstmalig in der Geschichte
des abendlédndischen Denkens den Weg der zweiwertigen Logik des Aristoteles verlassen und
bereits selbst ein System mehrwertiger Logik definiert und somit einen Grundstein fiir die

spétere Entwicklung der fuzzy Theorie gelegt.

12 Lukasiewicz 1993 S 5
13 Lukasiewicz 1993 S 6f



1.1 Beispiel klassischer und unscharfer Mengen

Betrachtet man die Bevolkerung eines Staates, stellt sich oft die Aufgabe diese in zwei
Gruppen zu teilen, etwa in eine der Erwachsenen und eine der Kinder. Der juristische Weg
zur Losung dieser Aufgabe geschieht iiber die Einfilhrung der Begriffe voll- und
minderjahrig. Man teilt nun die Bevdlkerung in die Menge der Volljdhrigen, das ist also die
Menge all derjeniger, die bereits das 18. Lebensjahr {iberschritten haben, und die Menge der
Minderjéhrigen, also alle, die noch keine 18 Jahre alt sind. Das mag in vielen Situationen
durchaus sinnvoll sein, doch ergibt sich auch die skurrile Situationen einen 17jdhrigen, der
einen Tag vor seinem 18. Geburtstag steht, als minderjahrig zdhlen zu miissen, wiahrend er am
Tag darauf zu den Volljdhrigen zéhlt. Seine rechtliche Situation hat sich somit von einem zum
anderen Tag gewandelt, wahrend sein subjektives Empfinden wéhrend dieser zwei Tage sich
wohl kaum geédndert hat. Diese Mengeneinteilung basiert auf dem klassischen Mengenbegriff;
von jedem Menschen steht zweifelsfrei fest, ob er zur Menge der Volljdhrigen oder der der

Minderjéhrigen zéhlt.

Mittels der unscharfen Mengen kann man nun diesen abrupten Wechsel vermeiden, da
man die Zugehorigkeit zur Menge der Erwachsenen kontinuierlich gestalten kann. Durch die
Definition einer Zugehorigkeitsfunktion ist es etwa moglich, 14jdhrigen eine Zugehdrigkeit
von z.B. 0.2, 18jdhrigen von 0.8 und 40jdhrigen von 1 zuzuweisen. Dabei ergibt sich, dass
hier die 18jdhrigen eine Zugehorigkeit von 0.8 zu den Erwachsenen, zeitgleich aber eine

Zugehorigkeit von 0.2 zu den Kindern haben.

Beide Zugénge zur Einteilung haben ihre Vorziige und beide haben ihre Nachteile. Bei
dem Zugang iiber die unscharfen Mengen stellt sich etwa die Frage, wie man zu den genauen
Werten der Zugehorigkeit gelangt. Warum wihlt man 0.8 und nicht etwa 0.7998 als
Zugehorigkeit des 18jahrigen? Auf diese Vor- und Nachteile der Fuzzy Theorie wird nun im
Laufe dieser Arbeit eingegangen werden und es wird versucht werden, zu klaren, inwieweit

diese der klassischen Logik iiber- bzw. unterlegen ist.



2 Formale Einfiihrung in die fuzzy Theorie

Die Definition einer unscharfen Menge geht auf den Elektrotechniker Lofti Zadeh zuriick, der
1965 den Aufsatz ,,Fuzzy Sets publizierte, in dem er erstmals das Konzept der fuzzy Theorie

prisentierte.'* Schon eingangs wurde erklirt:

A fuzzy set is a continuum of grades of membership. Such a set is characterized by a
membership (characteristic) function which assigns to each object a grade of
membership ranging between zero and one.”"”

Im vorhergehenden Kapitel wurde angedeutet, dass in einem gewissen Sinne die
unscharfe Mengenlehre als Erweiterung der klassischen angesehen werden kann; hier sei nun
angemerkt, dass die Definition einer unscharfen Menge jedoch ihrerseits bereits das Konzept

der klassischen Menge voraussetzt, welche in ihrer Definition eingeht.

Voraussetzung einer unscharfen Menge ist eine klassische, scharfe Grundmenge X,
deren Elemente herangezogen werden. Fiir die Elemente dieser Grundmenge wird nun eine
Zugehorigkeitsfunktion p definiert, welche die Zugehdrigkeit der einzelnen Elemente zur

neuen fuzzy Menge angibt. Dann ist die Menge aller Zahlenpaare (x; p(x))
A= {(xu(x)|reX,0< u(x)<leR}

eine unscharfe Menge. X ist dabei die Grundmenge und p die Zugehdrigkeitsfunktion,
welche reelle Werte annimmt; konventionell beschrankt man p auf Werte zwischen 0 und 1,

wobei ein hoherer Wert jeweils einer hoheren Zugehorigkeit entspricht.

Die Aufstellung der Zugehdrigkeitsfunktion ist ein subjektiver Akt und wird in der
Praxis nicht eindeutig bestimmt sein. Aufgrund der sprachlichen Unschérfe der
Charakterisierung einer fuzzy Menge kann nur ein unscharfes Kriterium bestimmt werden,

welches den Elementen x € X die entsprechenden p Werte zuordnet.'

Darin besteht jedoch keinesfalls ein groBer Nachteil gegeniiber anderen mathematischen
Theorien, die in der Praxis angewandt werden. Wahrscheinlichkeitsverteilungen sind
ebenfalls bis zu einem gewissen Grad beliebig und subjektiv gewéhlt, da man die exakten
Wabhrscheinlichkeitswerte — falls solche {iberhaupt existieren — nicht berechnen kann. Auch in
mathematischen Modellen mittels Differentialgleichungen werden Annahmen getroffen und
die Gleichungen werden hinsichtlich einer leichten Losbarkeit adaptiert. Die Forderung nach

einem exakt definierten Verfahren zur Bestimmung der Zugehdrigkeitswerte einer fuzzy

4 Vgl. Zadeh 1965
1> Zadeh 1965 S 338
'® Vgl Bothe 1995 S 27f
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Menge erscheint somit als iibertrieben. Die Festlegung auf bestimmte Zugehorigkeitswerte
muss also — wie bei anderen Theorien — nicht eindeutig sein. In der Anwendung zeigt sich

dariiber hinaus, dass der Einfluss der exakten Werte der Zugehdrigkeitsfunktion gering ist.'’

Innerhalb der unscharfen Mengenlehre konnen bekannte Begriffe der klassischen
Mengenlehre eingefiihrt werden; so z.B. die unscharfe leere Menge oder die unscharfe

Potenzmenge.'® Ferner werden im Folgenden Operationen auf fuzzy Mengen definiert.

2.1 Operationen auf unscharfen Mengen

Fiir eine fuzzy Menge A mit einer Zugehorigkeitsfunktion p definiert man das Komplement

von A durch
AS = (s A))x € X, A(x) =1- u(x)}

Man erkennt leicht, dass (A“)° = A gilt. Anhand der Definition erkennt man ebenso, die
bereits erwihnte Eigenschaft unscharfer Mengen, Elemente mit dem mengentheoretischen
Komplement gemein haben zu kénnen, also ANAS # {} und AUA® # X fiir eine unscharfe

Menge A c X

Fiir A,B < X mit Zugehorigkeitsfunktionen pa bzw. pg definiert man nun
A N B mittels pa n g = min{pa(x), pa(x)} (Durchschnitt) und
AU B mittels pa U g = max{pa(x), us(x)} (Vereinigung)

Linguistische Verkniipfungen wie ,,nicht, ,,und* bzw. ,,oder* werden in Analogie zur
Booleschen Algebra durch die mengentheoretischen Operatoren Komplement, Durchschnitt
bzw. Vereinigung realisiert. Ebenso iibertragen sich die de Morganschen Regeln auf die

unscharfen Mengen."

2.2 Unscharfe Teilmengen

In der klassischen Mengenlehre ist eine Menge A in B enthalten (A < B), falls sdmtliche
Elemente von A auch Elemente von B sind. Aquivalent dazu ist die Charakterisierung von A

< B durch AGZB, also dass A in B enthalten ist, falls A Element der Potenzmenge von B ist.

'7Vgl. Avenhaus / Seising S 279
'8 Vgl ebenda S 29ff
' Vgl Bothe 1995 S 38ff
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Natiirlich kann man nun auch fiir unscharfe Mengen die Inklusionsrelation definieren: Seien

Aund B < X nun fuzzy Mengen mit Zugehorigkeitsfunktionen ps bzw. pg, dann gilt:
A c B genau dann, falls pa(x)< ps(x) fiir alle xe A%

Die Inklusionsrelation < ist hierbei eine bindre zweiwertige Relation: Eine fuzzy Menge
ist Teilmenge einer anderen oder sie ist es nicht — ein Drittes gibt es nicht. Das Konzept der
Teilmengigkeit unscharfer Mengen ist also selbst scharf und nicht fuzzy. Im Gegensatz zu
diesem Inklusionsbegriffs Zadehs wird in Kapitel 4.2 die Beziehung — als unscharfe Relation

eingefiihrt werden.

2.3 Fuzzy Logik

In der bisherigen Diskussion wurde ersichtlich, dass das Konzept einer fuzzy Menge allein
auf der Annahme beruht, dass die Beziehung € (Element von) nicht zweiwertig ist, sondern
vielmehr jeden beliebigen Wert zwischen 0 (falsch) und 1 (wahr) annehmen kann. In der
Theorie der unscharfen Mengen wird von € als zweistelligem Priadikat nicht verlangt, dass
thm nur wahr und falsch als Wahrheitswerte zugeordnet werden kann; alle anderen Aussagen

und Pridikate bleiben hingegen zweiwertig.”!

Ersetzt man nun die zweiwertige Logik durch eine unendlich-wertige Logik, ergibt sich
nicht nur an das Priddikat € die Forderung der Zulassung sdmtlicher Zahlen aus dem
Einheitsintervall als Wahrheitswerte, sondern dariiber hinaus an alle logischen Junktoren.
Gibt es unendlich viele Wahrheitswerte, kann keine Tabelle mehr — wie im Falle der
zweiwertigen Logik — als Definition der Semantik dienen. Zur Bestimmung der Bewertung
der logischen Junktoren wird nun eine Abbildung von [0,1]x[0,1]—[0,1] definiert, die jedem
Wahrheitswertepaar, bestehend aus den Wahrheitswerten der Teilsdtze des Aussagenpaares,

den entsprechenden Wahrheitswert der zusammengesetzten logischen Aussage zuordnet.*

Wie es in der klassischen Logik einen engen Zusammenhang zur klassischen
Mengenlehre gibt, so ergibt sich auch in der Theorie der unscharfen Mengen ein enger
Zusammenhang zum unendlich-wertigen Logiksystem der fuzzy Logik. Dieser

Zusammenhang ergibt sich vermdge der Deutung des Enthaltenseingrades des Elements xe A

*"Vel. Zadeh 1965 S 340
! ygl. Kruse / Gebhardt / Klawonn 1993 S 55
2 Vgl. Kruse / Gebhardt / Klawonn 1993 S 55f
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(na(x)) als Wahrheitswert. Hierzu definiert man das mehrwertige zweistellige Pridikat e

durch die Festlegung
xeA| = pa(x),

wobei die Schreibweise von |xeA| durch Betragsstriche hier den Wahrheitswert

bedeutet. Aus dieser Definition ergeben sich ferner folgende Zusammenhénge
[x € ANB| = pa~s(X)
[x € AUB| = paus(x)
X € Al= (%)

Hiermit ergibt sich nun der Zusammenhang der Theorie der fuzzy Mengen und der

fuzzy Logik selbst.

2 Vgl. Gottwald 1989 S 301f
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3 Vagheit als spezielle Form der Ungewissheit

3.1 Die Paradoxie des Sorites

Eubulides von Milet soll im vierten Jahrhundert v. Chr. den so genannten Sorites eingefiihrt
haben; das griechische Wort sorés bedeutet Haufen. Sorites steht heute noch allgemein fiir
Paradoxien, die durch Verwendung des Kettenschlusses auftreten24; der Kettenschluss ist eine
wiederholte Anwendung des Schlusses A—B und B—C, ergo A—C. Beim Problem des
Sorites wird wesentlich davon Gebrauch gemacht, dass als giiltige Antwort auf eine

13

Entscheidungsfrage nur ,Ja“ oder ,Nein“ zugelassen wird. Umgangssprachliche

Zwischenformen wie ,,Naja“, ,,eher ja* oder ,,cher nein“ sind als Antworten nicht méglich.
Dann prisentiert sich der Sorites in folgender Form:
Frage: Bildet ein Korn einen Haufen?
Antwort: Nein.
Frage: Bilden zwei Kdrner einen Haufen?
Antwort: Nein.

Frage: Verwandelt also die Zufiigung nur eines einzelnen Kornes etwas in einen

Haufen?
Antwort: Nein.
Also bildet keine Anzahl an Kérnern einen Haufen.?

Der Kern des Problems besteht darin, dass ,,Haufen* kein klar definierter Begriff ist.
Somit macht auch eine exakt bestimmte Grenze, die bestimmt, ab wie vielen Kérnern etwas
ein Haufen wird, keinen Sinn. Genauso wenig macht es Sinn, auf die Frage ,,Ab wie wenigen

Haaren tridgt man eine Glatze?* eine exakte numerische Antwort zu geben.

Historisch gesehen ist das Paradoxon des Sorites eines der ersten Uberlegungen zum
Problem der Vagheit der Begriffe.”® Uber zweitausend Jahre spiter formuliert der deutsche
Mathematiker und Philosoph Gottlob Frege in den Grundgesetzen der Arithmetik

folgendermalfien:

., Eine Definition eines Begriffes (moglichen Prddikats) muss vollstindig sein, sie muss
fiir jeden Gegenstand unzweideutig bestimmen, ob er unter den Begriff falle (ob das

2 Vgl. Sainsbury 1993 S 39
» Vgl Buldt S 48ff
% ygl. Buldt S 41ff
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Pridikat mit Wahrheit von ihm ausgesagt werden kénne) oder nicht. Es darf also keinen
Gegenstand geben, fiir den es nach der Definition zweifelhaft bliebe, ob er unter den
Begriff fiele, wenn es auch fiir uns Menschen bei unserem mangelhaften Wissen nicht
immer moglich sein mag, die Frage zu entscheiden. Man kann das bildlich so
ausdriicken: der Begriff muss scharf begrenzt sein ... Einem unscharf begrenzten Begriffe
wiirde ein Bezirk entsprechen, der nicht iiberall eine scharfe Grenzlinie hdtte, sondern
stellenweise ganz verschwimmend in die Umgebung iiberginge. >’

Klassische Gesetze der Aussagenlogik, wie das Gesetz vom ausgeschlossenen Dritten
oder das Prinzip der Kontraposition, bendtigen das obige Postulat, da diese wichtigen Gesetze

der bindren Logik sonst an Giiltigkeit verloren.”® Frege schreibt hierzu:

,Das Gesetz vom ausgeschlossenen Dritten ist ja eigentlich nur in anderer Form die
Forderung, dass der Begriff scharf begrenzt sei.“”’

Ein sprachlicher Ausdruck ist also vage, falls die Grenzen seiner Anwendbarkeit nicht
scharf definiert sind; falls seine Anwendbarkeit nicht in jeder Situation grundsitzlich
zweifelsfrei geklirt ist, das heiBt prinzipiell zweifelsfrei geklirt werden kann.*® Ob man seine
Anwendbarkeit — bei mangelhaftem menschlichen Wissen — tatsdchlich kliren kann, ist nicht

entscheidend.

Begriffe wie ,,Haufen” sind also vage und nicht exakt bestimmt. Qualitative Begriffe
wie ,,rot*, ,,schon® oder ,,grof}* werden ebenfalls als vage eingestuft werden, wenn man iiber
sie nachsinnt. Doch wie ist das bei quantitativen Termini? Ist ,,Meter* oder ,,Sekunde* ein
priziser Begriff? Bertrand Russell schreibt in seinem 1923 verfassten Aufsatz ,,Vagueness®,
dass auch solch quantitative Termini vage sind, da sie nur unzureichend préizise definiert
werden konnen. Wenn der Meter als ein gewisser Abstand zwischen zwei Marken eines
bestimmten Stabes in Paris mit einer gewissen Temperatur definiert wird, dann enthilt auch
diese Definition Vagheit, denn die Marken sind keine Punkte, und die Temperatur kann nicht
exakt bestimmt werden. Deshalb sind — so folgert Russell — alle nicht logischen Begriffe
vage; insbesondere sind ,,wahr und ,,falsch® vage. Doch aus dieser Vagheit der Begriffe
»Wahrheit” und ,,Falschheit™ folgt implizit auch die Vagheit der logischen Begriffe, die iiber

diese definiert werden.*!

Geht man davon aus, dass alle Begriffe mehr oder weniger vage sind, stellt sich die

Frage nach der Vagheit des Begriffs ,,Vagheit. Mit der obigen Argumentation macht es

7 Frege 1966 S 69
* Vgl. Buldt S 66f
¥ Frege 1966 S 69
% Vgl. Luzzati 1999
3! vgl. Russell 1923
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wenig Sinn, davon auszugehen, dass ,,vage™ exakt definierbar und die Menge aller vagen
Begriffe eine klar zu bestimmende Menge sei. Dies fiihrt zu folgender Unterscheidung:
Vagheit erster Stufe befasst sich mit der Vagheit der Begriffe, wie es in dem
vorangegangenen Absatz getan wurde. Die Vagheit zweiter Stufe befasst sich mit der Vagheit
des Begriffs ,,Vagheit* selbst. Diese Vagheit zweiter Stufe ist umstritten; die eine Seite hilt
sie fliir unumgénglich und sogar als konstitutives Element echter Vagheit, die andere Seite

meint, sie umgehen zu kénnen.

Kehrt man zuriick zur Paradoxie des Sorites, ldsst sich die Frage nach der Existenz der

Vagheit zweiter Stufe veranschaulichen:

Man ist sich gemeinhin einig, dass ein Korn alleine kein Haufen ist. Ebenso wird man
sich einig sein, dass 100.000 Koérner ein Haufen sind. Von nun an stehe das Priadikat H(n), zur
kompakteren Schreibweise, flir die Eigenschaft ,,n Korner sind ein Haufen“. Es gilt also
H(100.000) und —H(1). Da der Begriff ,,Haufen* vage ist, ldsst sich keine scharfe Grenze
zwischen Haufen-Sein und Nicht-Haufen-Sein ziehen, das heift, es gibt keine natiirliche Zahl

o mit 1<®<100.000, sodass H(n) fiir n>® und —H(n) fiir n<w.

Aufgrund der Vagheit von ,,Haufen* gibt es also stets einen Bereich an £eN, fiir die
nicht exakt bestimmbar ist, ob H(§) oder —H(§) gilt. Verneint man nun die Vagheit zweiter
Stufe, geht man von der Existenz zweier natlirlicher Zahlen ®;, ®, aus, die diesen Bereich der

Unsicherheit exakt eingrenzen.

Es gilt also flir E<wm;: —H(§)
01<E<my: Es ist unsicher, ob & Korner ein Haufen sind.
2<&: H(©)

Dieser abrupte Wechsel zwischen sicherem Haufen-Sein und unsicherem Haufen-Sein
ist allerdings genauso wenig zufriedenstellend wie ein abrupter Wechsel zwischen Haufen-
Sein und Nicht-Haufen-Sein. Eine Vagheit zweiter Stufe scheint also, wenn nicht evident, so

doch wenigstens naheliegend zu sein. >

32 Vgl. Buldt S 47f
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3.2 Drei Arten der Vagheit

Kehren wir nun zur Vagheit erster Stufe zuriick. Es gibt drei verschiedene Moglichkeiten,
Vagheit aufzufassen: erstens als eine ontologische Vagheit. Deutet man auf einen Menschen
und behauptet man, das sei Herr Q, dann stellt sich die Frage, ob das auch Herr Q ist, wenn
ithm ein paar Haare ausgegangen sind, oder sich sonst eine kleine Verdnderung an ihm
ereignet hitte. Ab wann ist dann Herr Q nicht mehr Herr Q? Dies ist eine wichtige Frage und
motiviert eine weitere interessante Fragestellung: Gibt es vage Gegenstinde? Wenn man auf
einen Berg in der Umgebung deutet und fragt, wo denn der Berg beginnt und die Ebene
aufhort, erkennt man, dass Berge als Teil der Wirklichkeit vage Begrenzungen haben. Daraus
muss jedoch nicht folgen, dass der Berg an sich tatsdchlich vage ist — es konnte auch nur das

.33
Wort ,,Berg* vage sein.

Als zweite Art der Vagheit ergibt sich die sprachliche: ,,Herr Q ist dick® ist eine
Aussage, die sich nicht durch empirische Daten messen lassen wird; Dicksein ist an sich nicht
exakt bestimmbar und befindet sich in einem pradikativen Halbschatten, kann also weder
durch empirische noch durch begriffliche Untersuchungen bestimmt werden (Russell sprach

anstelle von préadikativen Halbschatten von einer Penumbra).

Eine dritte Art der Vagheit ist von sprachpragmatischer Natur: Nicht die Sprache ist
vage, sondern ihr Gebrauch. Die Sprache als Abbild der Welt ist nach dieser Auffassung in
der Lage die Welt so zu beschreiben, wie sie ist; geht man also von keiner ontologischen
Vagheit aus, ergibt sich auch keine Vagheit der Sprache. Was vage ist, ist der Gebrauch der
Sprache, da der Mensch aus Zeit- und Energiegriinden die sprachlichen Mdglichkeiten nicht
voll ausschopfen kann und die Sprache nur unvollstindig anwendet. So wiére z.B. eine
Unterscheidung des Terminus ,,Haufen* in beliebig viele unterschiedliche Termini fiir Ein-
Korn-Haufen, 2-Korner-Haufen,..., 1-Million-Korner-Haufen, etc. theoretisch denkbar, um
die Problematik im Paradoxon des Sorites zu vermeiden. Denkt man an das bekannte Geriicht,
dass Eskimos angeblich iliber zwanzig verschiedene Worter fiir unser deutsches ,,weill*
kennen®*, erkennt man den Kern des Arguments. Die Sprache ist in der Lage Exaktheit
beliebig genau zu approximieren; mit der Anwendung dergleichen wird jedoch Vagheit
eingefiihrt, die nicht von der Sprache herriihrt, sondern vom Anwender selbst, der die Sprache

vage verwendet.

33 Vgl. Sainsbury 1993 S 69ff
** Vgl. Radtke
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3.3 Andere Arten der Ungewissheit

Ungewissheit ist laut Duden® ein Zustand, in dem etwas nicht feststeht; das heif}t, in dem
nicht entscheidbar ist, ob etwas gilt oder nicht, ob etwas wahr ist oder nicht. Vages Wissen —
oder unscharfes Wissen — ist — wie wir gesehen haben — ungewiss im Sinne der Definition.
Das Phédnomen der sprachlichen Vagheit oder Unschérfe lasst sich allerdings von anderen
Arten der Ungewissheit unterscheiden: von Mehrdeutigkeit (Ambiguitit), von Allgemeinheit,

von Unspezifitidt (Ungenauigkeit) und auch von Relativitit.

13

Zur Erkldrung sollen hier Beispiele dienen: Der Satz ,Ich gehe zur Ba ist nicht
vage, sondern mehrdeutig, falls ,,Bank* nicht ndher bestimmt ist und nicht klar ist, ob etwa
eine Sitzgelegenheit oder ein Geldinstitut gemeint ist. Diese Unbestimmtheit ldsst sich aber
durch eine genauere Bestimmung leicht aufkldren. Mehrdeutigkeit ist also nur in dem Sinne
ungewiss, da im Moment nicht klar entschieden werden kann, ob die Behauptung wahr oder
falsch ist. Mit einer genaueren Beschreibung lésst sich diese Ungewissheit schnell beheben.
Allgemeinheit ruft im folgenden Satz Ungewissheit hervor: ,,Dieser Mensch isst gerne
Spaghetti“ — hier kommt ,,Mensch* als Allgemeinbegriff vor und somit ist z.B. sein
Geschlecht — ménnlich oder weiblich — nicht ndher bestimmt; deshalb ist ,,Mensch* aber nicht

vage, sondern eben nur allgemein, was ebenfalls zu einer momentanen Ungewissheit fiihrt,

die schnell und einfach zu beheben ist, etwa durch Ergédnzungen und Spezifikationen.

Ungenauigkeit ist eine weitere Art von Ungewissheit, die deutlich von Vagheit
differenziert werden muss. Der Satz ,,Karl wiegt zwischen flinf und fiinfhundert Kilogramm.*
ist unbestimmt, nicht weil der Ausdruck vage, sondern weil seine Grenzen zu unspezifisch
sind; sie sind nicht verschwommen, sondern einfach zu wenig prizise.*® Diese Unspezifitit,
Imprazision oder Ungenauigkeit ldsst sich durch die in der Praxis oftmals herrschende
Situation der Unmoglichkeit der Feststellung eines beliebigen Grades an Genauigkeit
erkldaren. Wenn ein Instrument nicht klein genug skaliert ist, gibt es Grenzen der Messbarkeit,
die Imprézision ergeben. Im Falle der Darstellung irrationaler Zahlen ist Imprézision per se
unvermeidbar und tritt somit im téglichen Leben wie auch im wissenschaftlichen Alltag
unvermeidbar auf. Ungenauigkeit ist folglich nicht vermeidbar, weshalb sich die Frage nach

der bestmoglichen Behandlung dergleichen stellt. In der Praxis beschreibt man derartige

35 Duden Stichwort ,Ungewissheit™
(http://www.duden.de/suche/index.php?begriff=Ungewissheit&bereich=mixed&pneu=#inhalte)
36 vgl. Buldt S 41
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imprézise Informationen durch nichtstochastische Fehlerintervalle, die man auch als

Spezialfall von unscharfen Mengen auffassen kann.”’

Das Phidnomen der Vagheit ist grundlegend vom Phédnomen der Relativitét verschieden,
auch wenn diese beiden Phidnomene oftmals gemeinsam auftreten. Im Satz ,,Der Mann ist
grof3.“ ist das Adjektiv ,,gro3* sowohl vage als auch relativ. Im Unterschied zur Vagheit lasst
sich die Relativitit durch Zusatzinformation beheben. Der Ausdruck ,,Der Mann ist groB3.* ist
kontext- und kulturbezogen: Fillt der Satz innerhalb eines Pygmidenstammes, hat er eine
andere Bedeutung als beispielsweise in Mitteleuropa. Der Satz mag auch unterschiedliche
Bedeutungen in Schweden und Italien haben, wo die Menschen gemeinhin als groBer bzw.
kleiner gelten. Unter Pygmien wird eine Kdrpergrof3e als grof3 gelten, die mit Sicherheit in
Europa als nicht grof3 gilt. Diese Relativitit im Satz ,,Der Mann ist gro3* ldsst sich aber durch
Zusitze wie zum Beispiel ,,Dieser Mann ist groB fiir einen Osterreicher” beheben. Die
Vagheit des Satzes ldsst sich nicht beheben. Oftmals tritt Relativitit auch ohne Vagheit auf:
Das Préadikat ,,ist iberdurchschnittlich grof3*“ ist ein relatives, aber kein vages.
Uberdurchschnittlich groB ist jemand, der groBer ist als der Durchschnitt — und die statistische
Durchschnittsgrof3e ist ein Wert, der sich exakt bestimmen lésst. Dieses Prédikat ist also nicht
vage, sondern nur relativ, da erst der Kontext bzw. die Menge, deren Durchschnittsgrof3e

gemeint ist, spezifiziert werden muss.®

Eine weitere Art der Ungewissheit ist mit dem Begriff des Zufalls verbunden, der uns durch
Wiirfelexperimente, Lottoziechungen und dergleichen vertraut ist. Diese spezielle mit
Zufallsmechanismen verbundene Ungewissheit wird in einem spdteren Kapitel noch

eingehend diskutiert und deren Unterschied zur Vagheit herausgearbeitet werden.

3.4 Unterschiede zwischen Vagheit und auf Zufall
basierender Ungewissheit
Das Phanomen der Ungewissheit, wie es in natiirlichen Sprachen auftritt, wurde als solches in
der Vergangenheit zu ungenau unterschieden. Vagheit als subjektive Ungewissheit, die nicht
objektivierbar ist, wurde nicht als spezielle Form betrachtet und wird erst durch die
Entwicklung der Fuzzy Theorie addquat formalisiert.*” Diese subjektive Ungewissheit, die

Gegenstand der Fuzzy Theorie ist, ist eine Ungewissheit prinzipieller Natur, die im Gegensatz

37 Vgl. Kruse/Gebhardt/Klawonn 1993 S 3
¥ Vgl. Sainsbury 1993 S 41
3% Vgl. Mukaidono 2004 S 95
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zu ungenauem oder mehrdeutigen Wissen nicht behebbar ist. Weder Spezifizierung noch
Beobachtungen oder theoretische Uberlegungen reduzieren Vagheit. Die Ungewissheit, die
Gegenstand der Wahrscheinlichkeitstheorie ist, rithrt von einer Unkenntnis der Zukunft — die
wird durch Kenntnis der Zukunft aufgehoben. Ist es heute ungewiss, ob es morgen schneit, ist
dies morgen nicht weiter unklar, sondern gewiss. Die Frage, welche Augenzahl nach dem
Wurf eines Wiirfels aufscheinen wird, ist lediglich vor dem Wurf interessant; vor dem Wurf
betrdgt die Wahrscheinlichkeit fiir eine bestimmte Augenzahl zwischen eins und sechs, bei
einem fairen Wiirfel genau ein Sechstel. Nach dem Wurf ist der Sachverhalt gekldrt und die
Ungewissheit verschwunden; entweder es liegt die bestimmte Augenzahl obenauf oder nicht.
Bei Vagheit ist eine breitere Kenntnis der Zukunft irrelevant. Bei dem Problem, ab wann eine
Ansammlung Korner ein Haufen ist, ist es unwichtig, ob man die Ko&rner tatsdchlich
angehduft hat oder nicht. Die Frage, ab wann Korner einen Haufen bilden, ist per se

interessant und zeitlos.

Ein Beispiel moge den Unterschied zwischen Ungewissheit der Fuzzy Theorie und der
Wahrscheinlichkeitsrechnung veranschaulichen: Wenn ich mich frage, ob mein Nachbar —
den ich nicht kenne — groBer als 1.80 Meter groB ist, ldsst sich dies mittels der
Wahrscheinlichkeitsrechnung gut behandeln. Man nimmt Bevolkerungsstatistiken zu Rate
und errechnet, wie grof3 die Wahrscheinlichkeit ist, dass ein Grazer Mann grof3er als 1.80 ist.
Die Ungewissheit in der Behauptung ,,Mein Nachbar ist grofer als 1.80.“ wird durch die
Angabe einer Wahrscheinlichkeit modelliert. Lerne ich meinen Nachbarn kennen, kann ich
ihn messen, erfahre ich seine tatsdchliche Grofle und kann die gestellte Frage nun eindeutig
klaren. Die Wahrscheinlichkeit, mit der mein Nachbar grofler als 1.80 ist, spielt nunmehr

keine Rolle mehr — entweder mein Nachbar ist nun grof8er oder nicht.

Von ganz anderer Art Ungewissheit ist die Behauptung ,,Mein Nachbar ist groB.“ Hier
ist nicht die Frage ungeklért, ob dies der Fall ist oder nicht, sondern vielmehr die Bedeutung
des Wortes ,,gro3* an sich ist ungeklart. Hier hilft es nicht, dass ich den Nachbarn kennen
lernen und ihn messen kann; ,,grof3* ist ein vages Adjektiv und die Frage, wer groB ist oder

nicht, ist subjektiv.

Wenn wir nun die Wahrscheinlichkeit eines Ereignisses angeben, tun wir dies, da wir
nicht wissen, ob dieses Ereignis nun tatséchlich eintritt oder nicht. Diese Unkenntnis der
Zukunft, dieses Unwissen, ob das Ereignis nun eintritt oder nicht, ist reduzierbar, falls man

den Wissensstand erhoht; man kann dazu Statistiken durchfithren oder Versuche machen.
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Ebenfalls konnen theoretische Uberlegungen die Ungewissheit mindern und die
Wahrscheinlichkeitsprognosen ~ genauer  machen, z.B. mittels Theoreme  der

Wahrscheinlichkeitslehre.

Dies alles fiihrt im Falle der Vagheit zu keiner Verminderung der Ungewissheit; weder
kénnen theoretische Uberlegungen noch Versuche und Beobachtungen vage Begriffe

spezifizieren.

3.5Versuche Vagheit zu formalisieren

“All traditional logic habitually assumes that precise symbols are being employed. It is
therefore not applicable to this terrestrial life, but only to an imagined celestial
existence.””

Mit diesen Worten kritisiert Bertrand Russell die klassische Logik und deren Annahme
praziser Begriffe. Es stellt sich nun die Frage, wie man vage Begriffe besser beschreiben

kann.

Aufgrund der hohen Akzeptanz, Bewdhrtheit und Klarheit der klassischen bindren
Logik soll bei dem Versuch, eine Logik zu finden, die das Phdnomen der Vagheit besser
modellieren kann, die klassische Logik nicht aufgegeben werden, das heil3t sie soll mitunter

als Spezialfall einer neuen Logik ihre Giiltigkeit bewahren.

Im Folgenden sollen Logiken prisentiert und diskutiert werden, die versuchen, das

Konzept der Vagheit zu modellieren.

3.5.1 3-wertige Logik

In der bindren Logik ist jede Behauptung entweder wahr oder falsch; ein drittes gibt es nicht
(tertium non datur). Dies nennt man das Zweiwertigkeitsprinzip der klassischen bindren
Logik*'. Dies impliziert jedoch nicht, dass von jeder Behauptung auch eindeutig festgestellt
werden kann, ob sie wahr oder falsch ist — die Behauptung ist wahr oder falsch, nur kann dies
eventuell nicht festgestellt werden. Es gibt Sétze empirischen Inhalts, von denen nicht
festgestellt werden kann, welchen Wahrheitswert sie besitzen. Beispiel hierfiir sei die
Behauptung ,,Aristoteles hatte die Blutgruppe A positiv.“ Ferner koénnen Sitze
metaphysischen Inhalts wie zum Beispiel iiber die Existenz Gottes weder verifiziert noch
falsifiziert werden; das Zweiwertigkeitsprinzip impliziert jedoch, dass auch diese Sitze wahr

oder falsch sind, unabhingig von der Moglichkeit der Feststellung des Wahrheitswertes.

0 Russell 1923
*'Vgl. Gottwald 1989 S 1
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Nun ist es der pradikative Halbschatten, der ein vages Priadikat nicht zweifelsfrei als
wahr oder falsch erkennbar macht. Als Folge konnte man in naheliegender Weise die
zweiwertige Logik um einen weiteren Wahrheitsgrad — der zwischen wahr und falsch liegt —
erweitern. So wird in der 3-wertigen Logik des Jan Lukasiewicz, die als Beginn mehrwertiger
Logiksysteme angesehen werden kann, neben den Wahrheitswerten wahr (1) und falsch (0)
unbestimmt (0.5) als dritter Wahrheitswert eingefiigt, um so den pridikativen Halbschatten
vager Pridikate abzudecken. Doch reicht die Anwendbarkeit des dritten Wahrheitswertes
noch weiter. Im klassischen Beispiel des unbestimmten Wahrheitswertes des Lukasiewicz
,Ich werde Weihachten nédchsten Jahres in Warschau sein® ist kein vager Begriff, kein vages
Pradikat vorhanden — dennoch ist die Behauptung ungewiss und eine Zuordnung der
Wahrheitswerte wahr und falsch erscheint zum jetzigen Zeitpunkt als inaddquat. Die 3-
wertige Logik erscheint also prima vista in der Lage, nicht nur Vagheit sondern, noch

allgemeiner Ungewissheit formalisieren zu kdnnen.

Weiters ist die 3-wertige-Logik in der Lage die Russellsche Antinomie, der Menge aller
Mengen, die sich nicht selbst enthalten, zu formulieren; jedoch ist die Antinomie in der 3-
wertigen Logik nicht ldnger kontradiktorisch. Dies ist leicht einzusehen, wie folgende
Argumentation zeigt. Wenn man die Menge aller Mengen, die sich selbst nicht enthalten,
formalisiert, erhdlt man R:={x| x ¢ x}. Die Antinomie besteht nun in der Bedingung R € R
< R ¢ R. Diese ist in der 3-wertigen-Logik jedoch erfiillt, wenn man als Wahrheitswert

,unbestimmt* wihlt.**

Es zeigt sich allerdings, dass ein 3-wertiges wie auch n-wertiges Logiksystem
ungeeignet ist, die bekannten Antinomien der naiven Mengenlehre zu umgehen.
Konventioneller Weise wird die Inkonsistenz der Mengenlehre durch Einschrinkungen — wie
etwa im Axiomensystem von Zermelo-Fraenkel — behoben; eine grundsitzlich andere
Moglichkeit wére die Inkonsistenz nicht mehr in der klassischen Pradikatenlogik zu
betrachten, sondern stattdessen in mehrwertigen Logiken. Fiir diesen Versuch wurde jedoch
bereits gezeigt, dass zumindest endlich-wertige Logiken dafiir nicht geeignet sind, da in ihnen

Analoga zur Russellschen Antinomie ableitbar sind. *

Neben dem Zweiwertigkeitsprinzip basiert die bindre Logik noch auf einer zweiten
Annahme, die — im Gegensatz zum Zweiwertigkeitsprinzip — mehrwertige Logiken ebenfalls
treffen, ndmlich das Extensionalititsprinzip. Dieses Prinzip besagt in seiner

aussagenlogischen Fassung, dass der Wahrheitswert einer zusammengesetzten Aussage nur

2 Vgl. Malinkowski S 309ff
# Vgl. Gottwald 1989 S 291ff
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von den Wahrheitswerten der atomaren Bestandteile der Aussage abhédngt. Auf dieses Prinzip
verzichtet auch die mehrwertige Logik nicht, insbesondere nimmt es auch die beschriebene 3-

wertige Logik des Lukasiewicz an.**

Die Entstehung der mehrwertigen Logikkonzeption, die mit den Arbeiten von
Lukasiewicz und der polnischen Logikerschule begann®, ist eng mit der Entstehung des so
genannten Intuitionismus verbunden. Zwar bedeutet die Kritik am Prinzip vom
ausgeschlossenen Dritten und Aquivalenter Formulierungen noch keineswegs den Ubergang
zu mehrwertigen Logiksystemen, doch erschiittert diese Kritik das Prinzip der Zweiwertigkeit
von logischen Aussagen, welches das Fundament der binidren Logik bildet.*® Durch die Kritik
am Zweiwertigkeitsprinzip sind mehrwertige Logiksysteme und der Intuitionismus also
verbunden; doch reicht diese Verbundenheit nicht weiter, wie schon das Prinzip der doppelten
Negation zeigt, welches in mehrwertigen Systemen giiltig ist — wie noch zu sehen sein wird —

und das die intuitionistische Schule verneint.

Die 3-wertige-Logik bietet also allerhand Moglichkeiten, die liber die der bindren Logik

hinausreichen; nun soll untersucht werden, ob sie auch Vagheit addquat modellieren kann.

Kehren wir zum Paradoxon des Sorites zuriick, um diese Untersuchungen
durchzufiihren. Das Problem in der biniren Logik war der abrupte Ubergang von Nicht-
Haufen zu Haufen — der Wechsel von Nicht-Haufen zu Unbestimmt-Haufen jedoch und von
diesem zu Haufen muss ebenso abrupt erfolgen, da ein kontinuierlicher Ubergang mittels drei
Wahrheitswerten nicht moglich ist. Doch mit der Annahme einer Vagheit zweiter Stufe ist die
Angabe einer solchen scharfen Grenze zwischen H(k), ke N ist wahr, unbestimmt oder falsch
nicht sinnvoll. Mit der Annahme der Vagheit zweiter Stufe fillt also die Hoffnung, Vagheit

mittels einer 3-wertigen-Logik adiquat modellieren zu kénnen."’

3.5.2 Fuzzy Logik

In der fuzzy Logik stehen unendlich viele unterschiedliche Wahrheitswerte zur Verfiigung,
um eine Aussage zu valutieren. Zwischen den Extrema ,,Ein Korn ist kein Haufen* (—H(1))
und ,,100.000 Kd6rner sind ein Haufen* (H(100.000)) kénnen also beliebig viele verschiedene
Abstufungen getroffen werden; die Wahrheitswertverteilung kann sogar stetig verlaufen. H(n)

stehe — wie bereits eingefiihrt — fiir das Priadikat ,,n Korner sind ein Haufen™ und |H(n)| fiir

* Vgl. Gottwald 1989 S 1f

* Vgl. Gottwald 1989 S 5ff
* Vgl. Sinowjew 1986 S 34ff
7 Vgl. Buldt 70f
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dessen Wahrheitswert. Dann kann man eine Wahrheitswertverteilung bestimmen, die

folgender Relation geniigt:
0 =|H(1)|<HQ2)|[<H3)I<...<[H(n)| = 1 fiir sehr groe neN

Die Widerspriiche im Paradoxon des Sorites ergeben sich durch den mehrfach
angewandten Kettenschluss: Wenn eine Ansammlung kein Haufen ist und man gibt ein Korn
dazu (und ein Korn ist auch kein Haufen), dann ist das Ganze auch kein Haufen, denn die
Differenz von nur einem Korn kann nicht den Unterschied zwischen Haufen und Nicht-
Haufen ausmachen. Dieser Schluss mag richtig sein, wenn man zu einem Korn ein zweites
hinzufiigt oder aber auch wenn man zu zwei Kornern ein drittes hinzufiigt. Aber wie man
sicht kann man durch das mehrmalige Hinzufligen nur eines einzelnen Kornes eine
Ansammlung von 100.000 Koérnern erzeugen, die sicherlich Haufen genannt werden kann.
Versucht man dieses Problem mittels der fuzzy Theorie zu ldsen, muss also ein unscharfer

Folgerungsbegriff eingefiihrt werden, der die Widerspriichlichkeit des Sorites umgeht.

Wichtig fiir unscharfes SchlieBen ist die Formalisierung des Implikationsbegriffes, also
das Definieren eines Operators, der die unscharfe wenn-dann Beziehung passend interpretiert

und in eine formale Rechenvorschrift setzt, um den Kern des unscharfen Schlussfolgerns zu

bilden.

Konjunktion und Disjunktion werden in unendlich-wertigen Logiken einheitlich mittels
min bzw. max Operatoren definiert. Fiir die Subjunktion gibt es keine einheitliche Definition
in den unendlich-wertigen Logiken: Verschiedene Logiker haben verschiedene Definitionen
des Implikationsbegriffes gegeben. Hier soll zuerst auf die Definition Zadehs niher

eingegangen werden, bevor andere Definitionen diverser Logiker kurz angedeutet werden.

Um die Subjunktionsdefinition Zadehs besser nachvollziehen und verstehen zu konnen,

betrachten wir zuerst den scharfen Implikationsbegriff und dquivalente Formen™:

A—->B< —-AVB
S (—AVB)A(-AVA) da |EAT=|E| und |-EVE=]
&S -Av((BAA)

SAAB)V(-AAD da |-EAl|=-E|

* Vgl. Jaanineh / Maijohann 1996 S 181
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Mittels den bekannten Formalisierungen der Konjunktion und Disjunktion in der fuzzy
Logik, der Festlegung der Negation durch |-A| = 1-|A| und der Relation min(1-&, 1) = 1-§

ergibt sich nun fiir die unscharfe Implikation in der fuzzy Logik:
|A > B| := max(min(|A|,|B|), 1-|A])*
Wobei hier die Betragsstriche wieder den Wahrheitswert der Aussage symbolisieren.

Wie bereits erwihnt, wéhlen verschiedene Logiker diverse unterschiedliche
Definitionen fiir den Implikationsoperator; im Folgenden werden der Vollstindigkeit halber

vier weitere Definitionen prisentiert™:
Mamdani Implikation: |A—B| := min(|Al,|B)
Kleene Implikation: |A—B| := max(1-|Al,/B|)
Reichenbach Implikation  |A—B| = 1-|A|+A]|-|B|
Lukasiewicz Implikation  |[A—B| :=min(1,1-|A[+B|)

Dies sind verschiedene Definitionen fiir denselben sprachlichen Ausdruck ,,Wenn A,
dann B*“ — was alle gemein haben ist, dass sie das wichtige Gebot der zweiwertigen Logik
erfiillen, dass ein Schluss von etwas Wahrem zu etwas Falschem falsch ist: Gilt |Aj=1 und
IB|=0, hat eine Implikation A—B unter sdmtlichen angefiihrten Implikationsoperatoren den
Wahrheitswert 0, ist also falsch. Allgemeiner gesprochen gilt stets, dass der Schluss von
etwas Wahrerem auf etwas weniger Wahres mit einem verringerten Wahrheitswert valutiert
wird; umgekehrt wird der Schluss von etwas weniger Wahrem auf etwas Wahreres mit einem
héheren Wahrheitswert bewertet. Je hoher der Verlust an Wahrheitswert im Ubergang von
Antezedens zur Konklusion also ist, desto niedriger ist der Wahrheitswert, der dem gesamten

Konditionalsatz zugesprochen wird.”'

Betrachten wir nun den Schluss: Eine Ansammlung von einem Korn ist kein Haufen,
das Hinzufiigen eines Kornes macht daraus auch keinen Haufen, also ist eine Ansammlung
von 2 Kornern kein Haufen; also formal: —H(1) A (=H(1)—>—H(2)) ergo —H(2). Dass eine 1-
Korn-Ansammlung kein Haufen ist, wollen wir als vollig wahr bewerten, also |[-H(1)|=1. Wie
valutiert man nun den Wahrheitswert von —H(2)? Das ist tatsdchlich ein schwerwiegendes
Problem und eine Bewertung wird oftmals nicht eindeutig sein kdnnen; eine Bewertung ist oft

subjektiv und in einer gewissen Form beliebig, vor allem bei der Bewertung von nicht

*'Vgl. Jaanineh / Maijohann 1996 S 182
*0'Vgl. Jaanineh / Maijohann 1996 S 184
>!'vgl. Sainsbury 1993 S 63ff
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ganzzahligen Wahrheitswerten. Mathematische Sétze beispielsweise konnen hingegen oft
eindeutig und objektiv als wahr oder falsch bewertet werden, etwa ,,5 ist eine Primzahl* ist
wahr oder ,,2 teilt 3 ist falsch. Ebenso lassen sich empirische Sdtze finden, denen eindeutig
ein bestimmter Wahrheitswert zugeordnet werden kann; das Problem der Bewertung besteht
hauptsdchlich fiir ungewisse und vage Aussagen, oder fiir Aussagen, deren Wahrheitswert

(noch) nicht exakt gekannt wird.

Was man nun bei der Bewertung von H(2) beachten muss, sind folgende zwei
Bedingungen: —H(2) soll weniger wahr sein als —H(1) und es soll nicht viel weniger wahr
sein. Dies sind &duflerst vage Bedingungen, die vielerlei Wahrheitswertzuordnungen
ermoglichen. Wir wollen uns hier nicht auf eine fixe Zuweisung eines exakten
Wabhrheitswertes beschrianken; sei | -H(2)|=1-& und €>0 moglichst klein. Der Unterschied im
Wabhrheitswert der beiden Aussagen —H(1) und —H(2) kann infinitesimal klein gewé&hlt
werden, sodass die beiden Aussagen grob geschitzt und oberflachlich betrachtet gleich wahr
oder falsch sind. Der winzige Unterschied im Wahrheitswert ldsst aber auch den
Wahrheitswert des Konditionales —H(1)—>—(2) schrumpfen, weshalb der ganze Schluss
—H(1) A ( =H(1)>—H(2) ) ergo —H(2) nicht folgerichtig im klassischen Sinn ist, und die
Konklusion —H(2) einen geringeren Wahrheitswert besitzen kann als seine Prdmissen. Dies
ist ein neuer Ansatz, das Problem des Sorites zu 16sen: der modus ponens erhilt nicht den
Wahrheitsgrad der Prdmissen, das heifit die Schlussfolgerung des Arguments —H(n) A
(—=H(n)>—H(n+1)) ergo—H(n+1) kann einen geringeren Wahrheitswert haben als jede der
Pramissen.”> Anschaulich gesprochen kann man also den Schluss folgendermaBen
interpretieren: ,,Eine n-Korn-Ansammlung ist kein Haufen, also ist eine (n+1)-Korn-
Ansammlung auch kein Haufen® ist ein Schluss, der eine Konklusion mit verringertem
Wahrheitswert — impliziert. Zieht man also mehrmals Schliisse der Form
—H(n)A(=H(n)>—H(n+1)) ergo —H(n+1) verliert jedes Mal die Konklusion an
Wabhrheitswert. Nach einer geeigneten Anzahl an Schliissen ist der Wahrheitswert der
Konklusion niher an 0 als an 1. Dieser Ubergang von der Giiltigkeit des Schlusses hin zu
seiner Ungiiltigkeit wird mittels der Methoden der fuzzy Inferenz elastisch modelliert. Darin
besteht der Vorteil des approximativen SchlieBens der fuzzy Theorie: Der stetige Ubergang
von wahr zu falsch und umgekehrt ermoglicht die elastische Modellierung von

Problemstellungen.

32 Vgl. Sainsbury 1993 S 63ff
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Die fuzzy Theorie 16st also nicht die Frage, ab wann nun eine Ansammlung an K&rnern
ein Haufen ist. Vage Termini bleiben vage und auch die fuzzy Theorie kann diese nicht
prézisieren. Vagheit ist ein Phdnomen, das sich nicht beheben ldsst — zumindest nicht mit den
hier vorgestellten Methoden. Was die fuzzy Theorie zur Losung des Problems beitragen kann,

ist die addquate Modellierung des Phdnomens Vagheit.

Ein abrupter Wechsel zwischen Haufen und Nicht-Haufen erschien unserer sprachlichen
Auffassung zufolge als nicht sinnvoll; doch zwei- und dreiwertige Logiken implizieren
abrupte Wechsel, weshalb wir sie als nicht addquat zur Losung des Sorites zuriickwiesen.
Mittels der fuzzy Theorie gelingt es nun, diesen Wechsel von Nicht-Haufen zu Haufen
kontinuierlich verlaufen zu lassen, das Problem also stetig und elastisch zu modellieren, was
unserem natiirlichen Sprachempfinden von Vagheit am nédchsten kommt. Die Modellierung
des Problems ist nicht eindeutig; es ldsst sich nicht prédzise bestimmen, welchen
Wahrheitswert welche Ansammlung bekommen sollte — dies ist eine Folgerung der Vagheit
des Terminus ,,Haufen*. Was eine Modellierung jedoch stets beinhaltet ist der kontinuierliche
Ubergang zwischen Haufen und nicht-Haufen; wie dieser Ubergang numerisch genau verlduft

ist nebenséachlich.

3.5.3 Problemstellungen, die sich durch den Versuch, Vagheit
zu formalisieren, ergeben

Bisher wurde versucht Paradoxien, die sich durch den Sorites ergeben, mittels der fuzzy
Logik zu beseitigen. Es gelang uns, einen kontinuierlichen Ubergang von Nicht-Haufen zu
Haufen zu konstruieren, der unserem natiirlichen Verstandnis des Terminus Haufen sehr nahe
kam. Wir diskutierten somit die Vorteile, die ein fuzzy theoretischer Zugang zu dem Problem

gewihrt; nun soll auf deren Nachteile verwiesen werden.

Bei der Analyse von Paradoxien wie dem Sorites ergeben sich meist drei alternative
Losungsansétze: Die erste mogliche Losung ist die Verwerfung der Prdmissen des paradoxen
Arguments. Ein weiterer moglicher Losungsansatz bietet sich durch das Akzeptieren der
Schlussfolgerung der Paradoxie. Die dritte Moglichkeit, das Paradoxon zu umgehen, ergibt

sich durch eine Ablehnung des logischen Folgerns.>

Alle drei Losungsmoglichkeiten erscheinen als wenig wiinschenswert. Die Alternative,
die Pramissen zu verwerfen, gestaltet sich schwierig.>* Die Schlussfolgerung zu akzeptieren,

also zu akzeptieren, dass durch das Anhdufen vieler einzelner Kérner kein Haufen entstehen

>3 Vgl. Sainsbury 1993 S 45
> Vgl. Sainsbury 1993 S 47ff
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kann, erscheint ebenso wenig sinnvoll. Als dritte Alternative bleibt somit nur die Ablehnung
des logischen Folgerns in seiner bisherigen gewohnten Form fiir Argumente vom Typus des
Sorites. Dies ist der Losungsansatz, der in dieser Arbeit verfolgt wurde und auch zu einer

Vermeidung der Paradoxie fiihrte.

Es muss jedoch hervorgehoben werden, welche Schwachstellen dieser Ansatz mit sich
bringt. Dem Sorites liegt der modus ponens als Schlussform der klassischen Logik zugrunde;
diesen abzulehnen, fiihrt zu schwerwiegenden Problemen. Im in dieser Arbeit beschriebenen
Losungsansatz wurde die Giiltigkeit des modus ponens — einem zentralen Prinzip des
logischen Folgerns — angezweifelt. Der modus ponens ist der Schluss p A (p — q) ergo q. Ihn
anzuzweifeln bringt eine Reihe von neuen Problemstellungen mit sich und wird folglich auch
wenn moglich vermieden — doch ist es genau diese Aufgabe des modus ponens, die die
Widerspriichlichkeit des Sorites vermied und uns zu dem diskutierten Losungsansatz fiihrte.
Untersucht man nun die Anforderungen an den modus ponens in der zweiwertigen Logik,
erkennt man, dass die Aufgabe desselben in der mehrwertigen Logik der fuzzy Theorie
durchaus mit der Beibehaltung der Schlussregel innerhalb der bindren Logik vereinbar ist.”®
Sind Sétze entweder vollkommen wahr oder vollkommen falsch, bewahrt der modus ponens

seine Giiltigkeit.

Betrachten wir hierzu ein Beispiel: Der Wahrheitswert der Aussagen p und p—q sei
gleich 1. Mittels dem modus ponens zieht man nun den Schluss p A (p—q) ergo q — q hat also
dank giiltigem modus ponens den Wahrheitswert 1. Ohne den Schluss ergibt jedoch folgende
Uberlegung denselben Wahrheitswert fiir q: sei zunichst der Wahrheitswert von q unbekannt,
also |q| = x wobei x€[0,1]. Wenn |(p—q)| = 1 gelten soll und die Implikation der fuzzy Logik
verwendet wird, ergibt sich (da |p|=1 gilt): 1 = |(p—q)| = max( min(1l, x), 0 ); also muss
min(1,x)=1 gelten. Dies impliziert nun x = |q| = 1. Das heiit, man kann innerhalb der fuzzy
Theorie, falls sowohl die Aussage p als auch die Implikation (p—q) vollkommen wahr sind,
folgern, dass auch q vollkommen wahr sein muss — ganz wie es der modus ponens implizieren
wiirde. Es ist also unmoglich, dass die Primissen des Arguments vollkommen wahr und die
Konklusion vollkommen falsch ist — was die Definition des logischen Folgerns in der bindren
Logik erfiillt. Im Fall von nicht ganzzahligen Wahrheitswerten von p und (p—q) verliert der

modus ponens an Giiltigkeit, doch taucht dieser Fall in der klassischen Logik nicht auf.

Die fuzzy Theorie 16st also die Paradoxie des Sorites mit dem Preis der Aufgabe des

modus ponens als Schlussregel des logischen Folgerns; diese Aufgabe lédsst sich jedoch

> Vgl. Sainsbury 1993 S 64
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verteidigen mit der Begriindung, dass der modus ponens nur aufgegeben werden muss, falls er
auf Aussagen mit nicht ganzzahligen Wahrheitswerten angewandt werden soll. Fiir
ganzzahlige Wahrheitswerte bleibt er weiterhin giiltig, denn der modus ponens ist genau dann
giiltig, wenn [pA(p—>q)]—>q eine Tautologie ist, also bei jeder beliebigen

Wahrheitswertverteilung wahr ist, was folgende Wahrheitswerttabelle zeigt:

Aussage plql|p pP—q p A (p—>q) [p A (p—>9] —>q
Wahrheitswert | |p| | [q| | [p| | max(min(|p||q]),1- | min([p], [p—>q[) max(
[p)) min(jpA(p—9)l;

laD), 1-[pA(p—>q)| )

Verteilung 0]07] O 1 0 1
0| 11]0 1 0 1
11071 0 0 1
1| 1] 1 1 1 1

Dieser Kompromiss, dass der modus ponens im allgemeinen Fall aufgehoben wird,
jedoch als Spezialfall seine Giiltigkeit bewahrt, l4sst sich — meiner Ansicht nach — akzeptieren

in Anbetracht der Mdglichkeiten, die diese Aufgabe mit sich bringt.
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3.6 Ein wahrscheinlichkeitstheoretischer Zugang zur
Ungewissheit

., The only satisfactory description of uncertainty is probability. >’

Mit diesen Worten beschreibt Dennis Lindley in seinem Aufsatz ,,The probability
approach to the Treatment of Uncertainty in Artificial Intelligence and Expert Systems* seine
These von der Unumginglichkeit der Wahrscheinlichkeitstheorie; er geht noch weiter und

behauptet:

,that the calculus of probabilities is adequate to handle all situations involving
uncertainty.’

Der {iibliche Zugang zum Wahrscheinlichkeitskalkiil ist ein axiomatischer; dieser hat
den Vorteil, nicht darauf einzugehen, was Wahrscheinlichkeit und Zufall bedeuten; die

Ergebnisse sind deshalb von der jeweiligen Interpretation unabhingig.

Der russische Mathematiker Andrei Nikolajewitsch Kolmogorow publizierte 1933 eine
Schrift mit dem Titel ,,Grundbegriffe der Wahrscheinlichkeitsrechnung®, in der er den Begriff
der Wahrscheinlichkeit mit dem eines MaBes verband.”™ Die MaBtheorie bietet heute die

Grundlage zum modernen Zugang zur Wahrscheinlichkeitstheorie.

Mathematisch werden Wahrscheinlichkeiten als eine Funktion P auf Ereignissystemen

definiert, welche folgenden Axiomen geniigt:
1.) 0<P(E)<1 fiir alle Ereignisse E
2.) P(S) =1 falls S ein sicheres Ereignis ist
3.) P(AUB) =P(A)+P(B), falls A n B = {}
Mit diesen Eigenschaften ist die Wahrscheinlichkeitsfunktion P nun ein MaB.”

Es wurde bereits angedeutet, dass dieser axiomatische, maftheoretische Zugang
unabhingig von speziellen Interpretationen der Wahrscheinlichkeit ist; ein anderer Zugang ist
der durch subjektive Wahrscheinlichkeit. Hier werden Wahrscheinlichkeiten als numerische

Grade des Vertrauens in den FEintritt von Ereignissen E, die vom Informationsstand H

>0 Lindley 1987 S 17

7 Lindley 1987 S 17

*¥ Vgl. Hochkirchen S 129ff
¥ Vg, Viertel 1997 S 4ff
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abhéngen, interpretiert; die Notation hierfiir ist P(E|H) — dies entspricht also dem subjektiven

Glauben, dass E eintritt, wenn man H weil3.

Wabhrscheinlichkeit ist hier ein Ma3 des Vertrauens bzw. Glaubens in ein Ereignis,

gegeben die Information H, das folgenden Eigenschaften geniigen muss:
1.) O<P(E|H)<1

2.) P(EvEy;H) = P(E|H)+P(E2/H) fiir zwei sich gegenseitig ausschlieBende Ereignisse
Ei, E

3.) P(AAB|H) = P(B| AAH)-P(A|H), falls das Ereignis A schon eingetreten ist und somit

der Informationsstand AAH ist.%

Diese drei Eigenschaften konnten auch als Axiome eines Wahrscheinlichkeitskalkiils
dienen, da aus ihnen die gesamte Theorie ableitbar wére. Man verzichtet jedoch gemeinhin

. . . . .. . 61
darauf, da die Kolmogorowschen Axiome einfacher und intuitiver sind.

3.7 Lindleys Kiritik an der fuzzy Theorie

Wie eingangs erwiéhnt, ist Lindley der Auffassung, der Wahrscheinlichkeitskalkiil sei der
einzige Weg, Ungewissheit addquat zu modellieren. FEinen groBen Vorteil der
Wahrscheinlichkeitslehre sieht er in dem einfachen und intuitiven Fundament, welches die
Axiome bilden. Anderen Wegen, Ungewissheit zu modellieren, unterstellt Lindley unsauber
und ohne axiomatische Basis zu sein.*? Wenigstens im Bezug auf die fuzzy Theorie sehe ich
diesen Einwand nicht; die Theorie der unscharfen Mengen ist ebenfalls prizise formuliert,
und trotz ihrer Beschiftigung mit unscharfen Objekten ist sie selbst scharf definiert. Eine

axiomatische Basis mag fehlen, doch kann dies auch an dem jungen Alter der Theorie liegen.

Lofti Zadeh kritisierte die Behauptung, allein mittels Wahrscheinlichkeitsrechnung
Ungewissheit modellieren zu konnen, und entgegnete, es sei eine gravierende Einschrinkung
der probabilistischen Methoden, dass diese nicht mit der durchdringenden Vagheit der

Information zu Recht kommen.*

Lindley konterte diesen Einwinden mit der Aufforderung zu demonstrieren, dass ein
Problem, gelost mittels fuzzy Theorie, nicht mittels eines probabilistischen Zuganges besser

gelost werden konne. Diese Aufforderung ist dullerst pragmatischer Natur, denn sie richtet

% vgl. Viertel 1997 S 6
6''vgl. Lindley 1987 S 18
62'vgl. Lindley 1987 S 19f
63 vgl. Zadeh 1983
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sich auf die tatsichliche Losbarkeit von Problemen.®* Weiters impliziert sie nicht, dass alle
Probleme, die Unsicherheit behandeln, durch die Wahrscheinlichkeitstheorie gelost werden

konnen; die Behauptung Lindleys besagt nur, dass sie es besser tun kann als die Alternativen.

Im Folgenden sollen Beispiele Lindleys erdrtert werden, mit denen gezeigt werden soll,
wie typische Aufgaben der fuzzy Theorie mittels der Wahrscheinlichkeitstheorie behandelt

werden.

Als Beispiel einer unscharfen Aussage behauptete Zadeh ,,Berkeleys Bevdlkerung ist
tiber 100.000.“; diese Aussage ist unscharf aufgrund des impliziten Verstidndnisses von ,,iiber*
— es bedeutet etwas mehr als 100.000 aber nicht viel mehr. Lindleys probabilistischer Zugang
wiére nun eine Wahrscheinlichkeitsaussage iiber eine Quantitét, die bestimmt werden kann.
(Im Allgemeinen sollten alle Quantitéten stets evaluierbar sein, da man diese auch verwenden
will.) Eine mogliche bestimmbare Quantitit wire die Antwort des zustindigen Amtes flir
Statistik, = Wahlen und  Einwohnerwesen, welche X  genannt sei. Die
Wahrscheinlichkeitsaussage der Behauptung ist nun P(X|H), wobei H das Wissen desjenigen
ist, der die Behauptung aufgestellt hat.

Alle vagen  Aussagen dieser Gestalt konnen auf analoge  Weise
wahrscheinlichkeitstheoretisch interpretiert werden. Mehr Vorsicht ist bei Aussagen vom
Typus ,,Heinrich ist jung.“ geboten; Heinrich ist hier eine wohldefinierte Person, sein Alter
hingegen ein vages Pridikat X. Die Aussage hdngt davon ab, wie und wo sie gemacht wird:
Auf dem Universititscampus bedeutet sie, Heinrich wire um die 20, in einem Seniorenheim
hingegen wiirde ein junger Heinrich vielleicht um die 60 sein. Folglich ist die Information
vom Kontext duflerst relevant. Ohne Informationen iiber den Kontext der Aussage wird man

P(X|H) abschédtzen miissen. 65

Als weiteren Einwand gegen die fuzzy Theorie brachte Lindley das Argument, diese sei
ein komplizierteres Konzept als die Wahrscheinlichkeitslehre. Fuzzy Logik fiihrt zu
nichtlinearem Programmieren und beinhaltet grole Komplexitit in der Sprache. Im Gegensatz
dazu ist der Wahrscheinlichkeitskalkiil duferst einfach, benétigt er doch nur drei einfache
Axiome. Im Sinne der Methode des Willhelm von Ockham (Ockhams Rasiermesser) sollte

nun die Wahrscheinlichkeitslehre gegeniiber der fuzzy Theorie favorisiert werden, da sie nicht

4 Vgl. Lindley 1987 S 19ff
65 vgl. Lindley 1987 S 20
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nur alle Probleme, die sich mittels der fuzzy Logik behandeln lassen, gleich oder besser 10st,

. . . ., 66
sondern dariber hinaus auch noch einfacher ist.

Ein letztes Argument gegen die fuzzy Theorie wird aus der Frage abgeleitet, warum
man Ungewissheit untersucht. Abgesehen vom intellektuellem Vergniigen, das Lindley aul3er
Acht ldsst, ergibt sich ihm nur eine einzige mogliche Antwort: um Entscheidungen trotz
Ungewissheit zu fdllen. Eine axiomatische Aufbereitung der Theorie des
Entscheidungstreffens zeigt nach Savage, dass nur eine Maximierung des erwarteten Nutzens
eine befriedigende Prozedur darstellt. Diese benutzt allerdings Wahrscheinlichkeiten und nur

diese sind die benétigten Quantititen fiir den Prozess des Entscheidungstreffens.®’

Gerade im Bereich der Anwendungen — auch in der Theorie der Entscheidungen —
fiihrte die fuzzy Theorie allerdings in den letzten Jahren einen groflen Siegeszug, weshalb die
Aktualitdt und Giiltigkeit dieses letzten Arguments, warum der Wahrscheinlichkeitskalkiil der

fuzzy Theorie als Theorie der Ungewissheit vorzuziehen ist, verloren ging.

% vgl. Lindley 1987 S 22
7 Vgl. Lindley 1987 S 22
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4 Ein geometrischer Zugang zur fuzzy Theorie

Die Einfiihrung unscharfer Mengen in dieser Arbeit erfolgt analog zur Defnition Lofti Zadehs
aus dem Jahr 1965 mittels Zugehorigkeitsfunktionen, also Abbildungen ps von der
Grundmenge X in das Einheitsintervall [0,1]. Der Nachteil dieses Zuganges liegt in den
Schwierigkeiten, die er bei der Veranschaulichung einer unscharfen Menge bereitet: Eine

unscharfe Menge A ist die Menge aller Zahlenpaare (x; [u(x)), also
A= {(x;,u(x)|x e X, 05 u(x)<1eR}

Betrachten wir zur Veranschaulichung die unscharfe Menge aller Jugendlichen. Als
erstes muss eine Zugehorigkeitsfunktion p definiert werden; diese Definition wird nicht
eindeutig bestimmt sein, da ,,Jugendlicher* ein vager Begriff ist und man nicht zweifelsfrei
feststellen kann, wer unter diesen Terminus fillt. Seien also beispielsweise alle 14- bis
18jahrigen zweifelsfrei jugendlich; weiters seien Kinder ab zwdlf und junge Erwachsene bis
21 zu einem gewissen Grad jugendlich — dann koénnte die fuzzy Menge J aller Jugendlicher

folgendermallen definiert sein:

J = {(12jéhriger,0.5), (13jahriger,0.75), (14jdhriger,1), (15j4hriger,1),
(16jahriger, 1), (17jahriger,1), (18jahriger,1), (19;j4hriger,0.8),(20jdhriger,0.4),
(21jéhriger,0.2)}

Die Lesart dieser Notation gestaltet sich wie folgt: Das Element (x,y) bedeutet, dass ein
Mensch mit dem Alter x einen Zugehorigkeitswert y zur Menge aller Jugendlichen besitzt —
also hat beispielsweise ein 15jdhriger einen Zugehorigkeitswert 1, hingegen ein 20jdhriger nur
eine Zugehorigkeit von 0.4. Elemente, die nicht in dieser Aufzéhlung aufscheinen, also unter
12jahrige und tiber 21jdhrige, haben eine Zugehorigkeitswert von 0 und werden deshalb nicht
aufgezdhlt.

Dieser Zugang ist wenig anschaulich und bietet somit Platz fiir Kritik, wie es unter
anderem Dennis Lindley tut, wenn er einen der Vorziige der Wahrscheinlichkeitslehre
gegeniiber der fuzzy Theorie in der Einfachheit des Wahrscheinlichkeitskalkiils und seiner

Axiome sieht.®®

Dem gibt Bart Kosko in seinem Artikel ,,Fuzziness vs. Probability* Abhilfe, indem er
eine neue Interpretation unscharfer Mengen einfiihrt; diese Interpretation ist stark geometrisch

und deshalb &uflerst anschaulich — zumindest im Spezialfall einer nur zwei- bzw.

% Vgl. Lindley 1987 S 22
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dreielementigen Grundmenge X. Die Geometrie unscharfer Mengen bezieht sich auf die
Grundmenge X={x},X2,X3,...,Xn} und den Bildbereich [0,1] der Zugehorigkeitsfunktionen.
Ausgangpunkt der Interpretation ist die Menge aller unscharfen Teilmengen von X, der so
genannten fuzzy Potenzmenge F(2X). Diese fuzzy Potenzmenge wird durch einen n-
dimensionalen Einheitswiirfel veranschaulicht, also einem Hyperwiirfel mit n Kanten der
Linge 1. Eine fuzzy Menge ist nun ein Punkt in diesem n-dimensionalen Hyperwiirfel.*” An
dieser Stelle wird ersichtlich, dass die Ordnung der Grundmenge X wesentlich ist:
Identifiziert man die Potenzmenge der n-elementigen Grundmenge X mit dem n-
dimensionalen Einheitswiirfel, ist die Ordnung von X insofern wesentlich, da sie sich auf die
Geometrie des Einheitswiirfels iibertrdagt. Betrachtet man beispielsweise die Grundmenge
{Hiitte, Haus, Palast}, kann deren unscharfe Potenzmenge mit einem dreidimensionalen
Einheitswiirfel identifiziert werden, bei der Zugehdrigkeitswerte von Hiitte jeweils auf der X-
Achse des Wiirfels, von Haus auf der Y-Achse und von Palast auf der Z-Achse angenommen
werden. Ist die Reihenfolge der Elemente in der Grundmenge eine andere, etwa {Haus, Hiitte,
Palast} erkennt man, dass die entsprechenden Zugehorigkeitswerte auf anderen Achsen
aufgetragen werden miissen. Die Ordnung der Grundmenge ist also wesentlich und sei von

nun an stets festgelegt.

Die Stiarke dieses Zuganges liegt — wie bereits erwahnt — in der Anschaulichkeit, die sie
im Spezialfall einer zwei- oder dreielementigen Grundmenge X bietet; anders als Bart Kosko
selbst sehe ich jedoch starke Veranschaulichungsschwierigkeiten bei beliebigen
Grundmengen X, insbesondere unendlichdimensionalen: Der menschliche Geist ist nicht in
der Lage sich einen n-dimensionalen Einheitswiirfel bei n>4 zu visualisieren; noch weniger ist

er in der Lage, sich unendlichdimensionale Hyperwiirfel vorzustellen.

Bart Kosko sieht in der Anschaulichkeit der Geometrie der fuzzy Mengen selbst eines
der groBten Argumente fiir die fuzzy Theorie.” Infolge der obigen Argumentation gegen eine
allgemeine Vorstellbarkeit dieser geometrischen Interpretation sehe ich in ihr kein starkes
Argument fiir die fuzzy Theorie. Im Spezialfall einer zweielementigen Grundmenge
X={x1,x2} bietet die geometrische Interpretation jedoch eine grofle Hilfe im Verstehen der
fuzzy Theorie und ihrer Theoreme; deshalb wollen wir uns im Folgenden auf diesen Fall

konzentrieren:

Die fuzzy Potenzmenge F(2*) der Menge X={x1,x,} ist also ein Quadrat der Linge 1.
Jede fuzzy Menge der Grundmenge X ist ein Punkt in diesem Quadrat; die Eckpunkte des

% vgl. Kosko 1990 S 216ff
" vgl. Kosko 1990 S 216
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Quadrats entsprechen den klassischen scharfen Mengen {}, {x;}, {x2} bzw. {x1,x»}. Die
klassische Potenzmenge entspricht also der Menge sdmtlicher Eckpunkte. Fasst man die
Punkte des Quadrats als zweidimensionale Vektoren auf, kann man die vier Ecken
folgendermaBlen schreiben: {(0,0), (1,0), (0,1), (1,1)}. Diese vier Vektoren sind also die
Elemente der klassischen Potenzmenge 2¥={ {}, {x;},{x2},X }. Identifiziert man nun diese
Menge mit der Menge der vier Vektoren, deutet die 1 im i-ten Argument des Vektors die

Priasenz des Elementes x;, i=1,2 an und die 0 die Absenz.

Analog gelingt die Identifizierung des Punktes A=(&,®) mit der fuzzy Menge A={(x,,§),
(x2,0)}, das heiit der Wert an der i-ten Stelle des Punktvektors korrespondiert mit der
Zugehorigkeit des Elements x; zu A, die durch das Bild der Zugehdrigkeitsfunktion pa(x;)
dargestellt wird.

Betrachten wir zur Veranschaulichung dieser Interpretation nochmals die in diesem
Kapitel bereits eingefiihrte unscharfe Menge J aller Jugendlicher: Diese bestand aus zehn
Zahlenpaaren. Mittels der neu eingefiihrten geometrischen Interpretation einer fuzzy Menge
lasst sich diese Menge J nun als ein zehndimensionaler Vektor schreiben, der an der i-ten

Koordinate jeweils den Zugehorigkeitswert des i-ten Zahlenpaares tragt.
J=(0.5,0.75,1,1,1,1,1,0.8, 0.4, 0.2)

Ein Vorteil dieser Notation ist sicherlich die verkiirzte Darstellung; was jedoch verloren
geht, ist die Information, was denn den Zugehorigkeitswert trdgt. In der alten Darstellung
mittels Zahlenpaaren lie3 sich sofort erkennen, dass (13jahriger, 0.75) dafiir steht, dass ein
Dreizehnjdhriger zu 0.75 ein Jugendlicher ist. Mit der neuen Darstellung kann man nur
erkennen, dass die zweite Koordinate des Vektors J die Zugehorigkeit 0.75 besitzt. Es muss
also extern vermerkt werden, was jede einzelne Koordinate bedeutet, fiir wen oder was sie

also steht.

Zum besseren Verstindnis wollen wir nun noch klassische Mengen betrachten, etwa
C={2,3} und D={1,2,3,4}; die Grundmenge fiir diese beiden Mengen sei X={1,2,3,4}. Dann
lassen sich die beiden Mengen in der neuen Schreibweise als vierdimensionale

Mengenvektoren auffassen; man erhélt also: C= (0, 1, 1,0) bzw. D=(1, 1, 1, 1)

Im Laufe des Kapitels wird ersichtlich werden, dass auf fuzzy Mengen verschiedene
Operationen und MaBle definiert werden konnen, die nur von den Zugehorigkeitswerten

abhingen; es ist also durchaus zweckdienlich, nur diese bei der Definition einer Menge
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anzugeben. Weiters bietet die neue Darstellung die Moglichkeit einer geometrischen

Darstellung, wie im Folgenden gezeigt werden soll.

Unten stehende Abbildung 1 visualisiert die neue geometrische Interpretation fiir fuzzy
Mengen auf der zweielementigen Grundmenge X={x;,X,}, was uns die Darstellung der fuzzy
Potenzmenge als Quadrat erlaubt: Die Eckpunkte des Quadrats sind die scharfen Mengen
{x1}, {x2}, X sowie die leere Menge {}. Der Punkt A=(1/3, 3/4) ist die fuzzy Menge
{(x1,1/3), (x2,3/4)}.

{x2}=(0 1)._ TX=(1 1)
... oA
X2 : L
@=(0 0). g. {x1}=(10)
x1

Abbildung 1

Mittels dieser Interpretation wird auch ein geometrischer Zusammenhang bei
Komplementbildung, Durchschnitt und Vereinigung ersichtlich: Der Durchschnitt zweier
Mengen wird durch paarweise Minimumbildung und die Vereinigung durch paarweise

Maximumbildung berechnet. Folgendes Beispiel veranschauliche dies:

13
A:(E,Z)
21
=GP
11
AﬁACI(Eaz)
23
AUAC:(E,?
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Dies wird durch folgende Abbildung dargestellt:

{x2}=(0 1). i : .Xz(l 1)

3 S Mot ALK L
X2 . e .

AR AnAg ... I

[ ! : )

@=(00) 1 2 {x1}=(10)

X1 3
Abbildung 2

Als Spezialfall wird ersichtlich, dass der Mittelpunkt M=(0.5, 0.5) als einziger Punkt

mit seinem Komplement tibereinstimmt; ferner gilt:
M=M =MnM =MuUM"

Es mag eine praxisrelevante Heuristik sein, fuzzy Mengen mittels scharfer Mengen zu
approximieren, indem man Punkte im Inneren des Quadrats durch den nédchsten Eckpunkt
ersetzt. Dies mag oft sinnvoll sein, da es bedeutend einfacher ist, von einem leeren Glas zu
sprechen, als von einem fast leeren oder von einer schonen Frau als von einer ziemlich
schonen Frau. Doch findet diese Abschdtzungsheuristik ihre Limitationen, je ndher man dem
Mittelpunkt kommt; je ndher man dem Mittelpunkt kommt, desto schwieriger wird es, die
fuzzy Menge durch den nichstgelegenen Eckpunkt zu ersetzen, da fiir die Mitte alle

Eckpunkte gleich weit entfernt sind, und somit keiner sinnvoll ausgewahlt werden kann.”!

4.1 MaRe fur fuzzy Mengen

Wie bereits festgehalten wurde, sind verschiedene Punkte des Quadrats verschieden unscharf
— die Extrema sind die Eckpunkte, welche klassischen scharfen Mengen entsprechen und der
Mittelpunkt, der als am unschirfsten bezeichnet wurde. Dies selbst ist eine duflerst vage
Behauptung, da die Relation ,,ist schirfer als* unscharf ist; dem soll jetzt Abhilfe geschaffen

werden, indem ein Mal} eingefiihrt wird, Unschérfe zu quantifizieren. Bevor dies getan wird,

Vg, Kosko 1990 S 219f
38



soll noch ein natiirlicher Abstandbegriff definiert werden: Man definiere das Mall M auf der
Grundmenge X={xy,Xy,...,X,} mittels

M(A)= Y, (x)

xeX

M entspricht dann der Kardinalitit bzw. Michtigkeit’* einer Menge; im Spezialfall einer
scharfen Menge gilt pa(x) = 1 fiir alle xe A, woraus M(A) = |A| im Sinne der Definition von
Maichtigkeit in der klassischen Mengenlehre gilt. Eine klassische dreielementige Menge hat
also die Maichtigkeit drei. Wie berechnet sich nun die Maichtigkeit der hier eingefiihrten
Menge aller Jugendlichen? Diese wurde mittels der geometrischen Interpretation

folgendermallen definiert:
J=(0.5,0.751,1,1,1,1,0.8,0.4, 0.2)

Die Miéchtigkeit von J — M(J) — berechnet sich nach Definition als Summe sdmtlicher

Koordinaten, also

M(J) = 0.5+0.75+1+1+1+1+1+0.8+0.4+0.2 = 7.65.

Die Michtigkeit M(A) einer Menge A entspricht dariiber hinaus der so genannten /’
Metrik, welche wir mit d bezeichnen wollen und folgendermallen definiert ist:

d(A4,B)=1"(4,B):= D |, (x)~py(x)|

xeX
Den Zusammenhang zwischen der Kardinalitdt M und der // Metrik zeigt folgender
kurzer Beweis”:

M(A) =) ()= D |, (0)=01= D | e, (x) =y (0) | = 1'(4,{})

xeX xeX xeX

Wie man aus der Topologie, einer mathematischen Theorie, die sich mit Abstinden
beschiftigt, weiB, ist Metrik ein verallgemeinerter Abstandbegriff; die I’ Metrik, die das oben
eingefiihrte MaB3 M induziert, entspricht dem Abstand zweier Punkte, indem man stets entlang
den Koordinatenachsen entlang von einem Punkt zum zweiten wandert und dabei die
Entfernung misst. M(A) entspricht somit dem Abstand, den der Punkt A zu der linken unteren
Ecke hat, wenn man zur Messung der Entfernung stets entlang der Koordinatenachsen

wandert.

72 Vgl. Jaanineh / Maijohann 1996 S 76f
" vgl. Kosko 1990 S 220f
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Durch das obige M gelingt nun die Definition des so genannten fuzzy Entropiemales E,
das die Unschirfe einer Menge quantifiziert:™*

_ M(ANA)

E(4): M(AU A°)

Aufgrund der besonderen geometrischen Eigenschaften der Durchschnitts- und
Vereinigungsbildung von A und AS, wie sie in Abbildung 2 visualisiert wurden, ergibt sich
folgende geometrische Deutung des EntropiemaBes: M(A N A°) entspricht dem Abstand von
A zum nichst gelegenen Eckpunkt; M(A U A°) entspricht dem Abstand von A zum weitest
entfernt gelegenen Eckpunkt.

Das fuzzy Entropiemall unterstreicht nochmals den Zusammenhang zwischen der
Aufgabe des Prinzips vom ausgeschlossenen Dritten und der fuzzy Logik: Wird das Prinzip
vom ausgeschlossenen Dritten angenommen, sind M(A U A%) = n und M(A N A%) = 0 bei
einer n-elementigen Grundmenge. Fiir das fuzzy Entropiemall ergibt sich somit 0/n also
E(A)=0 fiir eine klassische Menge. Fiir dem Mittelpunkt M ergab sich nach obigen
Rechnungen MUM® = MM, also E(M)=1. Aufgrund der Monotonie des Mafies M und der
Eigenschaft, dass A N A stets in A U A enthalten ist, also A N A® = A U A" gilt, ergibt
sich M(A N A9<M(A U A°) und folglich 0<E(A)<I fiir alle Mengen A. Folglich spricht man

von einer unschérferen Menge, falls das fuzzy Entropiemall E groBer ist.

Zur Veranschaulichung betrachten wir zunichst die klassische Menge C = {xeN| x<5};
das Komplement dieser Menge ergibt sich durch die Darstellung C© = [xeN| x>5}. Der
Durchschnitt dieser beiden Mengen ist die leere Menge mit Michtigkeit 0; die Vereinigung ist
die Menge der natiirlichen Zahlen — deren Maéchtigkeit wird X (Aleph 0) genannt. Das
Entropiemal} der klassischen Menge C ist also E(C)=0/N, was definitionsgemal} 0 ist. Das

Entropiemal3 von C als klassischer Menge ist also gleich 0.

Betrachten wir nun die fuzzy Mengen A = (0.5, 0.4) und B = (0.7, 0.9). Die
Komplemente ergeben sich durch A© = (0.5, 0.6) und B¢ = (0.3, 0.1). Die EntropiemaBe der
beiden Mengen sind folglich:

_ M(ANA) _ M((0.5,0.4) _09 _ [ e1s1818
MAUAS) M((0.506) 1.1
_M(BNBY) _ M((030.1)) 04

T MBUBS) M((0.7,09) 1.6

E(A)

0.25

E(B)

™ vgl. Kosko 1990 S 222f
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Die Relation ,,schirfer als“ ldsst sich also durch das Entropiemall E formalisieren;
Mengen mit hohem Entropiemal} (das maximal gleich 1 sein kann) werden als besonders
unscharf eingestuft, Mengen mit niedrigem Entropiemal} als besonders scharf. Wie bereits an
diesem einfachen Beispiel deutlich wurde, ist eine Menge unschirfer als eine andere, falls

seine Zugehorigkeitsgrade ndher bei 0.5 liegen.

4.2 Teilmengigkeit

Nach der Einfiihrung der Inklusionsbeziehung fiir unscharfe Mengen durch Lofti Zadeh ist
eine Menge A Teilmenge einer anderen Menge B oder nicht; die Relation < selbst ist scharf
und nicht fuzzy. Betrachtet man allerdings Mengen, wird man oft sehen, dass die eine zu
einem groflen Teil in der anderen enthalten ist — jedoch nicht ganz. Fiir solche Fille scheint es
wenig addquat — wenn man einmal die Wege der klassischen scharfen Mengenlehre verlassen
hat — die Teilmengeneigenschaft scharf aufzufassen und nur zwischen ist-Teilmenge-von und
ist-es-nicht zu unterscheiden. Aus diesem Grund wird das Teilmengigkeitsma3 S eingefiihrt,
dass den numerischen Grad der Teilmengigkeit von A in B entspricht; das heifit: S(A,B) =
Grad(A < B). Es ist unmittelbar evident, dass S folgende Eigenschaften haben soll: Ist A in B
enthalten, soll S(A,B) = 1 gelten. Weiters soll S(A,B) = 0 sein, falls A kein gemeinsames
Element mit B besitzt. Aus der Definition Zadehs” folgt, dass max(0, pa(x)-us(x)) = 0, falls x
in B, jedoch nicht in A enthalten ist; max(0, pa(x)-us(x)) > 0, falls x in A und B enthalten ist.
Dies motiviert folgende Definition:”®

2 max(0, i, (x) = 1 (x))
S(4,B)=1-%

M(A)

Diese Definition ist wohldefiniert und stimmt fiir die Spezialfille der alten
Inklusionsrelation iiberein: Ist A < B nach der Definition Zadehs, gilt also pa(x)< ps(x) fiir
alle xe X, dann ist pa(x)-pp(x)) < 0 und folglich max(0, pa(x)-us(x)) = 0 fiir alle xe X. Es gilt
folglich S(A,B)=1-0=1, falls A < B. Hat umgekehrt A kein gemeinsames Element mit B,
dann ist max(0, pa(x)-us(x)) = 0, falls xeB und max(0, pa(x)-us(x)) = pa(x) falls xeA.
Daraus ergibt sich fiir S(A,B)=1-M(A)/M(A)=1-1=0. Zur Illustration dieses Sachverhalts
betrachte man die klassischen Mengen C = {2,3} und D = {1,2,3,4}: Es gilt CcD. Das

Teilmengigkeitsmal} berechnet sich nun wie folgt:

7 Vgl. Zadeh 1965 S 340
76 vgl. Kosko 1990 S 226f
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S(C,D) =

4
D max(0, i, 5 (1) = 5.4 (D)

_ =l

M({2,3})
- max(0,-1) + max(0,0) + max(0,0) + max(0,-1) _
2
-9,
2
=1

Allerdings finden sich auch Elemente von D, die auch in C enthalten sind; es liegt also

nahe eine gewisse Teilmengigkeit von D in C zu vermuten. Man ermittelt hierzu:
S(D,C) =

4
Z max(oaﬂ{1,2,3,4} @) - M3 @)

=l

M ({1,2,3,4})
_ max(0,1) + max(0,0) + max(0,0) + max(0,1) _
4

=1

2

=1——=

1
2

Man sieht also, das Konzept der unscharfen Teilmengigkeit ldsst sich auch auf
klassische Mengen anwenden, denn auch scharfe Mengen konnen zu einem gewissen Grad in

anderen enthalten sein, aber eben nicht ganz so wie beispielsweise D teilweise in C enthalten

ist. Betrachtet man nun die fuzzy Mengen A = (2/3, 1/4) und B = (1/3, 2/3), dann erhélt man:

max(0,1/3) + max(0,-5/12) - 1/3 7

2/3+1/4 11/12 11

S(A4,B)=1-

Ebenso erhélt man:

S(B.A) =1- max(0,—1/3) + max(0,5/12) 1o 5/12 :l
1/3+2/3 1 12

Die fuzzy Menge A ist also zum Grad 7/11 in der Menge B enthalten, wéhrend B in A
zum Grad 7/12 enthalten ist; mit der Definition Zadehs einer scharfen Teilmengigkeit wire
weder A in B noch B in A enthalten gewesen, da fiir Teilmengigkeit jede Komponente des
einen Mengenvektors kleiner oder gleich der Komponente des anderen Vektors hitte sein

miissen, was bei den angefiihrten Mengen nicht der Fall ist.
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Es zeigt sich nun ferner, dass 0 bzw. 1 die untere bzw. obere Schranke des
Teilmengigkeitsmalles von S ist; fiir sdmtliche unscharfen Mengen A und B gilt somit:

0<S(A,B)<1.

In der klassischen Mengenlehre korrespondiert die Inklusion < mit der Subjunktion —
vermoge der Festlegung: A < B genau dann wenn Vx: xe A — xeB. Analoges gilt fiir das

Teilmengigkeitsmall S, das mit dem Lukasiewiczschen Subjunktor korrespondiert, falls

M(A)=1."

S(4,B) =

=1 - max(0, 1, (x) 1, (x) =

= 1- 1~ min(l - 0,1 — (s, (x) — pt, (x))] =
=min(L1-u, (x) - u,(x) =

= Subjunktion, ..., (4, B)

Subjunktion; ykasiewicz(A,B) entspricht hierbei der Subjunktion A — B nach Definition

von Lukasiewicz

4.2.1 Das TeilmengigkeitsmaR in der geometrischen Deutung

Betrachtet man die geometrische Visualisierung der fuzzy Potenzmenge von B in
Abbildung 3 erkennt man, dass A Teilmenge von B ist, falls sich A innerhalb des Vierecks
F(2%) befindet; intuitiv vermutet man, dass je niher sich ein Punkt A zum Viereck befindet,

desto grofer seine Teilmengigkeit S(A,B) sein sollte.

77'Vgl. Kosko 1990 S 227
" Vgl. Gottwald 1989 S 34
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Abbildung 3

Die Vorgehensweise zur Findung einer geometrischen Charakterisierung des
Teilmengigkeitsbegriffs wird also eine metrische sein: Es bezeichne d(A,B) also den Abstand
von A zu B, der mittels der // Metrik (sie sei von nun an wieder d genannt) berechnet wird.
d(A,F(2”)) bezeichne den minimalen Abstand zwischen A und dem Viereck F(2°), also
d(A,F(2”)) = min{d(A,B’)| B’eF(2")}. Das Element aus F(2"), welches A am nichsten liegt,
sei mit B* bezeichnet, folglich gilt d(A,F(2”)) = d(A,B*). Mittels dieses Abstandes definieren

wir nun:”’

d(A4,B*)

S(4,B)=1- oh

Berechnen wir nun zur Gew6hnung an die Definition die Teilmengigkeit von A in B auf
diese neu eingefithrte Weise, wobei A und B wieder wie folgt definiert sind: A = (2/3, 1/4)
und B = (1/3, 2/3). Wie bereits in Abbildung 3 ersichtlich, ist der minimale Abstand von A zu
F(2®) die waagrechte Verbindung von A zum Rechteck der fuzzy Potenzmenge von B; es ist
somit B* = (1/3, 1/4). Der minimale Abstand von A zu F(2®) berechnet sich folglich durch:
d(A4,B*) = Z|,uA(x)—,uB*(x) |=2/3-1/3]+|1/4-1/4|=1/3

xeX

7 vgl. Kosko 1990 S 228ff
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Womit fiir das Teilmengigkeitsmall — analog zur Berechnung mittels der bisherigen

Definition — folgt:

d(4,B% _ 13

S(4,B)=1-
M(A) 11/12

=7/11

An dieser Stelle muss nun gezeigt werden, dass die obige Definition sinnvoll ist, das heif3t,
dass sie mit der bisherigen Definition des TeilmengigkeitsmaBes aus dem vorhergehenden

Kapitel libereinstimmt.

Sei nun B*eF(2®) zu A am nichsten gemiB der I' Metrik. Dann gilt pa(x)=>pp+(x) fir
alle xeX aufgrund der Orthogonalitit im Hyperwiirfel der fuzzy Potenzmenge F(2°). Wir

unterscheiden nun zwei Fille:

Fall 1: pa(x)=pp+(x)
Dies gilt genau dann, wenn pa(x)<pp(x) fiir alle x und A somit gleich B* ist. Dies impliziert

max (0, pa(x)-ps(x)) = 0 fiir alle xe X.

Fall 2: pa(x)>pp+(x)
Dies gilt genau dann, wenn pa(x)>up(x), da andernfalls B nédher als B* wére. Somit gilt:
max(0, pa(x)-ps(x)) = pa(x)-pp(x).

Aus den beiden Fillen gemeinsam folgt, dass max(0, pa(x)-ps(x)) = |ua(x)-us+(x)|.

Summiert man diese Gleichung iiber alle xe X, erhélt man:

d(A4,B*)= D | 1, (x) = ptpe (¥) | = D max(Oyu,, (x) = g1, (%))

xeX xeX

Aufgrund dieser Gleichung kann man die entsprechenden Ausdriicke in den beiden

verschiednen Definitionen des TeilmengigkeitsmaBes S vertauschen, und ihre Aquivalenz

. 80
wurde bewiesen.

Fir B*, der Teilmenge von B, die A am nichsten liegt, ldsst sich noch eine weitere
Charakterisierung  finden: Da  pup(x)=up«(x) gilt, falls pa(x)>up(x), folgt
min(pa(x),pus(x))=us+(x) fiir alle x in X. Ferner gilt pa(x)=pp+(x), falls pa(x)<us(x), und

somit min(pa(x),pus(x))=us+(x) fiir alle x. Aufgrund der Definition des Durchschnitts mittels

%0 vgl. Kosko 1990 S 231
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der Minimumbildung, folgt B* = A n B. Die Kommutativitdt des Durchschnitts impliziert
ferner B* = A N B =A*.

Aufgrund der Definition des Abstandes d gilt d(A,B) = M(A) — M(B), falls pa(x)>pus(x) fiir
alle x in X.* Danun A N B c A (und daher ma~B(X) < pa(x) fiir alle x) folgt, dass d(A,B*) =
d(A, AnB) = M(A) - M(ANB). Setzt man dies in die obige Definition des

Teilmengigkeitsmales ein, erhélt man:

S(4,B) =
__d4.B%)
M(A)
_1_494,40B) _
M(A)
| MA)-MANB) _
M(A)
1+M(AmB) _
M(A)
_M(ANB)
M4

Also insgesamt:

M(AN B)

S(4,B) = Yo

Dieses wichtige Resultat soll nun in weiterer Folge Grundlage diverser Theoreme und

Interpretationen sein, die zu wesentlichen Resultaten in dieser Arbeit fiihren werden.

4.3 Das Entropie-Teilmengigkeitstheorem

Aus der eben eingefiihrten Formel zur Berechnung der Teilmengigkeit S wird ersichtlich, dass
diese rein als Funktion von Kardinalitditen M definiert werden kann; ebenso wurde das fuzzy
Entropiemall nur durch Kardinalititen definiert. Dies motiviert die Suche nach einem
Zusammenhang zwischen dem fuzzy Entropiemall E und dem Teilmengigkeitsmal3 S. Dieser
Zusammenhang ergibt sich, wenn man den Ausdruck S(AUA®,ANAS) eingehender

untersucht:

81 vgl. Kosko 1990 S 231
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S(AUVA“, AN A) =
_M(AVAYN(ANAY))
a M(AU A) -
CM[(AUAYNAINA)
- M(AU A) -
M(ANA)

M(AUAC)

= E(A)

Dies ergibt somit das Entropie-Teilmengigkeitstheorem
S(AUAS,ANA%) = E(A),

welches den Zusammenhang beschreibt zwischen der fuzzy Entropie einer Menge, das den
Grad der Unschirfe einer Menge quantifiziert, und der Teilmengigkeit von AUA® in ANAC.
Das Theorem besagt also, dass die Unschédrfe einer Menge in direktem Verhéltnis steht zu
dem Grade, in welchem die Vereinigung AUA® in ANA — einer ihrer eigenen Teilmengen —
enthalten ist. Plakativ gesprochen gibt also der Grad, in welchem das Ganze in einem seiner

Teile enthalten ist, die Unschirfe der Menge an.*

4.4 Teilmengigkeit und Wahrscheinlichkeit

Die im vorhergehenden Kapitel 4.2.1 hergeleitete Formel S(A,B) = M(ANB)/M(A) fiir den
Grad der Teilmengigkeit der Menge A in B stimmt mit der Definition der bedingten
Wahrscheinlichkeit P(B|A) iiberein™:

PB| 4) = P(BNA) P(ANB) _ M(ANB) L S(AB)
TP P M@

Die bedingte Wahrscheinlichkeit P(B|A) entspricht der Wahrscheinlichkeit P des Ereignisses
B, falls A zutrifft — diese Interpretation ist jedem seit seiner Schulzeit an geldufig und gehort
zu den Grundlagen der Wahrscheinlichkeitstheorie. Mittels der obigen Uberlegungen gelingt
nun eine neue Interpretation der bedingten Wahrscheinlichkeit. S(A,B) wurde eingefiihrt als
der Grad des Enthaltenseins der Menge A in der Menge B. In der klassischen Mengenlehre
gibt es nur die beiden Mdoglichkeiten AcB oder AzB. Viele Mengen stimmen jedoch mit
anderen nur teilweise iiberein, aber nicht ganz. Fiir Mengen, die fast gleich sind, aber nicht

ganz, nutzen wir die fuzzy Theorie zur Modellierung dieses ,,fast gleich®.

82 vgl. Kosko 1990 S 237f
8 vgl. Viertel 1997 S 12f
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Bleiben wir fiir einen Moment in der klassischen Mengenlehre und betrachten die
Mengen A = {2} und B = {2,4,6}, dann gilt A < B und somit S(A,B) = 1. Stellen wir uns nun
den Wurf eines Wiirfels vor und betrachten zwei Ereignisse: Ereignis A entspreche der
erscheinenden Augenzahl 2 nach dem Wurf, Ereignis B entspreche dem Ausgang, dass die
gewlirfelte Augenzahl gerade sei. Man schreibt hierfiir A = {2} und B = {2,4,6}. Wie groB ist
nun die Wahrscheinlichkeit P(B|A), also dass die gewiirfelte Augenzahl gerade ist, falls sie 2
i1st? Die Antwort ist selbstverstindlich 1. Ist die Augenzahl 2, dann ist sie auch gerade. In
diesem einfachen Fall stimmen der Grad der Teilmengigkeit und die bedingte
Wabhrscheinlichkeit {iberein. Die obige Argumentation impliziert ferner die Ubereinstimmung
der beiden GroBen auch in allen anderen Féllen. Betrachten wir das umgekehrte Beispiel
P(A|B), also die Wahrscheinlichkeit, dass die Augenzahl 2 ist, falls sie zumindest gerade ist;
sie berechnet sich mittels P(A|B)=P(AnB)/P(B)=P(A)/P(B)=(1/6)/(1/2)=1/3. Analog
berechnet man die Teilmengigkeit von B in A, also S(B,A)=M(ANB)/M(B)=M(A)/M(B)=1/3.
Wieder stimmen bedingte Wahrscheinlichkeit und Teilmengigkeit {iberein — wie es der obige

Beweis auch impliziert.

Durch die obige Deduktion der Aquivalenz von Teilmengigkeit und bedingter
Wahrscheinlichkeit gelingt also eine vollig neue Sichtweise und Interpretation der
Wahrscheinlichkeit. Anstelle der abstrakten Interpretation ,,Wahrscheinlichkeit von B falls A
eintritt“ gelingt die anschaulichere — weil geometrische — Interpretation von ,,Grad der
Teilmengigkeit von B in A“. Da der Terminus ,,Wahrscheinlichkeit kein anschaulicher
Begriff ist, wird intuitives Verstindnis und Vorstellung in der Wahrscheinlichkeitstheorie
sehr schwierig, da man nur mit abstrakten Grofen rechnet. Dies mag sicherlich ein Vorteil der
Interpretation durch Teilmengigkeit sein, da diese zumindest fiir einfache Beispiele eine gute

Anschaulichkeit gewihrleistet und sogar Skizzen ermdglicht:

48



*5

*4
ef B

Abbildung 4

Nehmen wir nun an, A und B seien klassische, scharfe Mengen, A habe a Elemente und
B sei gleich der Grundmenge X = {x;,X,...,Xs}. Dann ergibt sich fiir S(A,B) die so genannte
relative Haufigkeit:

M(ANB) _M(4) _a

SR =Ty M)

Mittels des Gesetzes der groflen Zahl, das davon ausgeht, dass die relative Héaufigkeit eines
Ereignisses fiir grole n gegen einen fixen Wert strebt, definiert man oft Wahrscheinlichkeit

als idealisierte relative Haufigkeit®.

4.4.1 Theoreme der fuzzy Theorie als Axiome der
Wahrscheinlichkeitslehre

Es gelang uns nun wichtige Begriffe und Formeln der Wahrscheinlichkeitstheorie innerhalb
der Theorie der unscharfen Mengen herzuleiten. Im Folgenden gehen wir noch weiter und
deduzieren aus der fuzzy Theorie drei Theoreme, von denen Dennis Lindley behauptet, sie

konnten als Axiome der Wahrscheinlichkeitslehre fungieren.

Wie bereits in Kapitel 4.2 ersichtlich wurde, gelten fiir alle fuzzy Mengen A,H folgende

Relationen:

0<S(H,A)<1 und S(H,A) = 1, falls Hc A

¥ Vgl. Viertel 1997 S 5
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Aufgrund der Definition der Kardinalitit M fiir unscharfe Menge ergibt sich auf evidente
Weise folgende Additivitdtseigenschaft: M(AUB) = M(A)+M(B)-M(ANB). Mittels dieser
Relation sowie der Definition des TeilmengigkeitsmaBles S und des Distributivgesetzes der

Mengenlehre lassen sich nun zwei wichtige Gleichungen deduzieren:

S(H, A4, L A,)=
CMHN(4,VUA4,) M(HNA)UHNA,)

- M@#H) M (H) B
CMHANA)+MHNA)-MHNANHNA)
= i -
_ M(HNA,) +M(HmA2) _MHNAN4,) _

M(H) M(H) M(H)
= S(H,A)+S(H,A,)—-S(H, 4, N A4,)

Und weiters:

S(H, A4, NA4,)=

_ MHNANA)

- i -

_ MHNANA) M(HNA)
- M (H) "M(HNA)
_ MHNA) M(HNA, NA,)
 MH) | MHNA4)
= S(H,A)S(4, "H, A,

Insgesamt konnten nun folgende 3 Beziehungen deduziert werden:
Konvexitét: 0<S(H,A)<1 und S(H,A)=1, fallsHc A
Addition: S(H,A1UA2) = S(H,A1)+S(H,A2)—S(H,A1(\A2)
Multiplikation:  S(H,A1nAz) = S(H,A;) S(A1nH,A»)
Identifiziert man nun wieder S(H,A) mit P(A[H) ergeben sich folglich die drei Regeln (vgl.

Kapitel 3.6), von denen Dennis Lindley postuliert:

“From these three rules, perhaps modiefied slightly, all of the many, rich and wonderful
results of the probability calculus follow. They may be described as the axioms of
probability.

% Lindley 1987 S 18
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Dies ist ein beachtliches Resultat: Da innerhalb der fuzzy Theorie drei Theoreme abgeleitet
werden konnten, mit denen man - wenn man sie als Axiome definiert — die
Wahrscheinlichkeitslehre — aufbauen  kann, impliziert dies, dass die gesamte

Wahrscheinlichkeitslehre als Folgerung der fuzzy Theorie betrieben werden konnte.
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5 Zusammenhang zwischen Wahrscheinlichkeitslehre und
fuzzy Theorie

Der Diskurs, ob die Wahrscheinlichkeitslehre ausreicht, simtliche Arten der Ungewissheit
addquat zu modellieren, also in der Lage ist, als einzige Theorie der Ungewissheit zu
fungieren, — wie es Befilirworter der Wahrscheinlichkeitstheorie wie Dennis Lindley
postulieren — wird oft mit Fragen erweitert, wie: Ist Ungewissheit dasselbe wie Zufall?
Reichen unsere Begriffe der Wahrscheinlichkeit aus fiir unsere Vorstellungen von

Ungewissheit?

Die Vermutung, Wahrscheinlichkeitslehre und fuzzy Theorie seien verschiedene
Formulierungen desselben Problems, liegt nahe, wenn man die beiden Kalkiile oberflachlich
vergleicht und erkennt, dass beide im Wertebereich zwischen 0 und 1 operieren. Doch bereits

konzeptionell erkennt man gewichtige Unterschiede in den beiden Theorien.

Die fuzzy Theorie beschreibt Vagheit; sie misst, zu welchem Grad ein Ereignis eintritt.
Die Wahrscheinlichkeitslehre untersucht die Ungewissheit, ob ein Ereignis eintritt.*® Dies
sind zwei fundamental verschiedene Arten von Ungewissheit und es stellt sich bereits a priori
die Frage, warum eine Theorie beide Arten von Ungewissheit addquat modellieren kdnnen

soll.

Wenn der Wetterbericht von einer 50%igen Chance spricht, dass es morgen regnet, ist
es heute also noch ungewiss, wie das Wetter morgen sein wird. Vielleicht regnet es, vielleicht
nicht — die Wahrscheinlichkeit fiir das eine wie das andere liegt bei 50%. Am néchsten Tag,
wenn man aus dem Fenster sieht und das Wetter beobachtet, sicht man, ob es regnet oder
nicht. Eine Wahrscheinlichkeitsaussage macht hier keinen Sinn mehr, weil es nicht mehr
ungewiss ist, ob es regnet oder nicht. Die Wahrscheinlichkeit eines Regenschauers spiegelt
also die Ungewissheit wider, ob dieses Ereignis in der Zukunft eintritt oder nicht. Anders
verhélt sich die Frage, ob die wenigen Tropfen, die zum Boden fallen, tatsdchlich schon
Regen genannt werden sollen oder nur Nieseln. Hierbei hilft es nicht, abzuwarten, bis das
Nieseln bzw. der Regen vorbei ist, um die Frage zu kldren, was das sei. Die Frage, ab wann
Nieseln tatsdchlich Regnen ist, ist eine Frage unabhédngig von der tatsdchlichen Realisierung
desselben; es ist eine Frage, die auf Vagheit, einer speziellen Art von Ungewissheit, abzielt

und nicht sinnvoll mittels Wahrscheinlichkeiten beantwortet werden kann.

% vgl. Kosko 1990 S 213
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5.1 Das Coxsche Theorem

Vertreter der Wahrscheinlichkeitstheorie wie der englische Statistiker und Bayesianer Dennis
Lindley oder der  Amerikaner Edwin  Thompson  Jaynes trennen  den
Wahrscheinlichkeitskalkiil streng von jeglichem nicht klassischen Logiksystem wie
insbesondere der fuzzy Logik. Jaynes war einer der ersten, der die Wahrscheinlichkeitslehre
als Verallgemeinerung der aristotelischen Logik betrachtete.’” Diese Vertreter sind es auch,
die oftmals das Coxsche Theorem als Argument fiir die Wahrscheinlichkeitslehre verwenden;
dieses wiederum wird oft falsch interpretiert bzw. aus diesem werden oft falsche
Konsequenzen gezogen. Das Theorem von Cox besagt: Jedes Glaubensmal} ist isomorph zu
einem WahrscheinlichkeitsmaB.*® Das heiBt, dass jedes GlaubensmaB auf ein
WahrscheinlichkeitsmaB3 zuriickgefiihrt werden kann. Dennis Lindley zieht daraus die

Konsequenz:

“The message is essentially that only probabilistic descriptions of uncertainty are
reasonable”™’

Doch die Annahmen der klassischen aristotelischen Logik sind teilweise problematisch,
wenn man das Theorem von Cox als Argument gegen nicht klassische Systeme verwendet.
Das Theorem zeigt nur, dass, falls Glauben derart definiert wird, wie es die Annahmen des
Theorems vorgeben, die Wahrscheinlichkeitslehre ein legitimer Kalkiil zur Behandlung von
Glaubensgraden ist. Aber es wird nicht gezeigt, dass die Wahrscheinlichkeitslehre die einzig

adiquate Methode ist, Ungewissheit zu formalisieren.”

5.2 Fuzzy Theorie als Extension der
Wahrscheinlichkeitslehre?
Es gelang uns in Kapitel 4.4 innerhalb der fuzzy Theorie Beziehungen zu deduzieren, die als
Axiomensystem eines Wabhrscheinlichkeitskalkiils dienen konnen. Die
Wahrscheinlichkeitstheorie ist folglich innerhalb der fuzzy Theorie ableitbar. Von einem
klassisch bindren metatheoretischen Standpunkt betrachtet, kann dies zu zwei verschiedenen
Konsequenzen fiihren: Erste mdgliche Konsequenz wire die logische Aquivalenz der fuzzy
Theorie und des Wahrscheinlichkeitskalkiils; dies ist der Fall, falls auch aus der
Wahrscheinlichkeitslehre die fuzzy Theorie deduzierbar ist. Dann wiéren die beiden Theorien

nur verschiedene Sichtweisen und Herangehensweisen, doch in ihrer Anwendbarkeit und

87 Vgl. Bretthorst

% Vgl. Colyvan 2004 S 8
% Lindley 1982 S 1

% vgl. Colyvan 2004 S 11
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Aussagekraft gleichwertig. Die zweite Moglichkeit wire — sollte die fuzzy Theorie nicht aus
der Wahrscheinlichkeitslehre deduzierbar sowie die umgekehrte Deduktion jedoch méglich
sein. — die fuzzy Theorie eine Extension der Wahrscheinlichkeitslehre wire und diese als

Anwendung besille.

Wie bereits im Zuge dieser Arbeit ersichtlich gemacht wurde, gelten der Satz vom
Widerspruch und das wohlbekannte Prinzip tertium non datur aus der klassischen Logik nicht
in der fuzzy Theorie; das heift: AA—A ist kein Widerspruch und Av—A ist keine Tautologie
in der fuzzy Logik — hingegen sind sie es in der klassischen. Diese Prinzipien fanden auch
Einzug in die verschiedensten Theorien, die auf der klassischen Logik und Mengenlehre
basieren — wie zum Beispiel in die Wahrscheinlichkeitslehre. Im Wahrscheinlichkeitskalkiil
gilt stets, dass ein Ereignis A eintritt oder nicht; eine dritte Moglichkeit ist ausgeschlossen,
also P(Av—A) = 1. Ferner ist es unmoglich, dass ein Ereignis A eintritt und zugleich nicht
eintritt, also formal P(AA—A) = 0. Dies ist ein grundlegender Unterschied, der es prima vista
unwahrscheinlich zu machen scheint, dass Wahrscheinlichkeitslehre und fuzzy Theorie
insofern dquivalent sind, dass sich jedes MaB3} der fuzzy Theorie als WahrscheinlichkeitsmaR3
schreiben ldsst und umgekehrt. Vor Augen sollte man sich hierbei halten, dass die fuzzy
Theorie als Extension der bindren Logik das Gesetz vom ausgeschlossenen Dritten als
Spezialfall beinhaltet — jedoch nur in Anwendung auf Aussagen mit Wahrheitswert 0 oder 1.
Die Wahrscheinlichkeitslehre als auf der zweiwertigen Logik und Mengenlehre basierende

Theorie ist hingegen nicht in der Lage das Prinzip vom ausgeschlossenen Dritten aufzugeben.

Dieser Gedankengang ist es auch, der folgenden Beweisversuch des fuzzy Theoretikers

Bart Kosko zu Grunde liegen scheint.

Das Entropie-Teilmengigkeitstheorem aus Kapitel 4.3 impliziert, dass die
Wahrscheinlichkeitstheorie nicht in der Lage ist, die fuzzy Theorie zu deduzieren. Um dies zu
beweisen, zeigt Kosko, dass kein wahrscheinlichkeitstheoretisches Mal} die Unschirfe einer

Menge messen kann.

Angenommen das Gegenteil wire der Fall und jedes Mal3 der fuzzy Theorie ldsst sich
durch ein wahrscheinlichkeitstheoretisches Mal3 ausdriicken. Wir betrachten nun das fuzzy
Entropiemal3 E, das fiir jede Menge seine Unschérfe angibt. Der obigen Annahme zufolge
existiert nun ein Wahrscheinlichkeitsmal3 P, das mit E iibereinstimmt, also P = E. Da P(X) = 1
gilt, falls X die Grundmenge ist, kann P nicht identisch 0 sein. Somit existiert ein A, sodass

P(A) = E(A)>0. Das Entropie-Teilmengigkeitstheorem impliziert nun
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0<P(A) = E(A) = S(AUAS,ANA),

wobei S das TeilmengigkeitsmaB ist, das den Grad der Teilmengigkeit von AUAS in
ANAS angibt. Da hier versucht wird, aus dem Wahrscheinlichkeitskalkiil die Theorie der
unscharfen Mengen abzuleiten, muss die klassische Mengenlehre angewandt werden, weshalb
die Vereinigung AUAS gleich ganz X ist und der Durchschnitt ANAS gleich der leeren
Menge ist. Somit gilt:

0<P(A) = E(A) = S(AUAS,ANAS) = S(X,{})

Wenn S(X,{}) groBer 0 sein soll, dann muss X in der leeren Menge enthalten sein. Dies
ist aber nur der Fall, falls X selbst und somit auch A < X leer ist. Somit gilt 1 = P(X) = P({}),

also dass das unmdogliche Ereignis sicher ist, was zu einem Widersprich fithrt.”’

5.3 Wahrheitsfunktionalitat

Eine weitere Beweisfithrung zur Demonstration der Nichtidquivalenz von fuzzy Theorie und
Wahrscheinlichkeitslehre kann iiber den Begriff der Wahrheitsfunktionalitit erfolgen. Ein
logischer Junktor heifit wahrheitsfunktional (oder extensional), falls der Wahrheitswert eines
durch ihn gebildeten Satzes nur vom Wahrheitswert seiner Teilsdtze abhingt. Mit anderen
Worten heif3t dies, dass sich der Wahrheitswert einer durch einen Junktor zusammengesetzten
Aussage zweier Teilsdtze nur durch die Wahrheitswerte dieser beiden Teilsdtze bestimmen
lasst. Ein logischer Kalkiil heifit wahrheitsfunktional, falls jeder Junktor wahrheitsfunktional

ist.

Die fuzzy Logik ist wahrheitsfunktional,’® wie sich leicht einsehen lisst, wenn man die

Definition der fuzzy logischen Junktoren betrachtet:

Seien A,B fuzzy Aussagen und |A| bzw. |B| deren Wahrheitswerte, dann werden die

Junktoren wie folgt berechnet:
Al =1-1]A]
|AAB| = min(|Al,|B|)
|AvB| = max(|]A[,|B])

[A—>B| = max(min(|AL,BJ), 1-|A])

' vgl. Kosko 1990 S 238
2 Vgl. Luzzati S 123
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Aus dieser Darstellung folgt auf evidente Weise, dass sich der Wahrheitswert jeder
Komposition zweier fuzzy Aussagen mittels der Wahrheitswerte der Teilsdtze bestimmen

14sst.

Wahrheitsfunktionalitdt ist folglich eine Eigenschaft, die der fuzzy Theorie zukommt.
Wiren fuzzy Theorie und Wahrscheinlichkeitslehre dquivalent, miisste diese Eigenschaft auch
fiir den Wahrscheinlichkeitskalkiil gelten, das heiBit die Wahrscheinlichkeitslehre miisste

wahrheitsfunktional sein.

Doch dies ist nicht der Fall, falls die Ereignisse nicht unabhingig im Sinne der
Wahrscheinlichkeitstheorie sind. Sei P ein Wahrscheinlichkeitsmall, dann heilen zwei

Ereignisse A und B unabhingig, falls P(ANB) = P(A)-P(B) gilt™.

In diesem Falle lésst sich die Wahrscheinlichkeit des Durchschnittes als das Produkt der
Wahrscheinlichkeiten der Teilereignisse bilden. Doch sind die Ereignisse nicht unabhéngig,

gilt dies nicht.

Betrachten wir nun die Axiome der Wahrscheinlichkeitsrechnung, wie sie im Kapitel
3.6 vorgestellt wurden. Das dritte Axiom lautet: P(AUB) = P(A)+P(B), falls AnB = {}.
Innerhalb des Wabhrscheinlichkeitskalkiils kann eine Additivititseigenschaft auch fiir
Ereignisse mit nichtleerem Durchschnitt deduziert werden; die Wahrscheinlichkeit der

Vereinigung berechnet sich durch®:
P(AUB) = P(A)+P(A)-P(ANB)

Es wird also ersichtlich, dass die Vereinigung zweier Ereignisse nicht

wahrheitsfunktional ist, falls die Ereignisse nicht unabhingig sind.

Ein Beispiel moge dies verdeutlichen: Sei A das Ereignis, dass bei einem Wiirfelwurf
eine gerade Augenzahl erscheint und sei B das Ereignis, dass die zwei gewlirfelt wird.
Untersucht man nun die Wahrscheinlichkeit, dass eine gerade Augenzahl oder die zwei

gewiirfelt wird, berechnet sich diese wie folgt:
P(AUB)=P(A) + P(B)—P(AnB) =12+ 1/6 - 1/6 = 1/2,

wobei gilt: P(ANB) = 1/6 = 1/12 = P(A)-P(B).

% Vgl. Viertel 1997 S 15
# vgl. Viertel 1997 S 12
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Eine weitere Untersuchung verdeutlicht abermals das Nichtgelten der
Wahrheitsfunktionalitit des Wahrscheinlichkeitskalkiils. Betrachten wir in Anlehnung an das
beriihmte Beispiel Jan Lukasiewicz’ die Aussage G ,,Ich werde Weihnachten nédchsten Jahres
in Graz sein.” Die Aussage habe aus nahe liegenden Griinden in der fuzzy Theorie den

Wahrheitswert 0.5 und in der Wahrscheinlichkeitslehre die Wahrscheinlichkeit 0.5.

Aus der Wahrheitsfunktionalitdt eines Kalkiils folgt insbesondere die Austauschbarkeit
logisch dquivalenter Aussagen in zusammengesetzten Sétzen. Dies ist leicht einzusehen, wenn
man bedenkt, dass sich der Wahrheitswert eines zusammengesetzten Satzes in extensionalen
Systemen aus den Wahrheitswerten der Teilsédtze ergibt; tauscht man also einen Teilsatz mit
einem anderen aus, der jedoch denselben Wahrheitswert besitzt, kann dies an der Rechnung

nichts dndern und der Wahrheitswert der gesamten Aussage bleibt konstant.

Beispielsweise kann in der fuzzy Logik — als wahrheitsfunktionales Kalkiil — die

Aussage G mit —G vertauscht werden. Somit gilt:
|Gv—G| =max(0.5,0.5)=0.5
|IGvG| =max(0.5,0.5)=0.5

Die beiden Aussagen ,,Ich werde Weihnachten nédchsten Jahres in Graz sein oder nicht.*
ist also innerhalb der fuzzy Logik dquivalent zur Aussage ,,Ich werde Weihnachten néchsten
Jahres in Graz sein.“ Ob dies eine wiinschenswerte Konsequenz ist, sei dahin gestellt —
jedenfalls folgt diese aus der Wahrheitsfunktionalitdt und ist wesentliches Charakteristikum

der fuzzy Logik.

Wire die Wahrscheinlichkeitslehre auch wahrheitsfunktional, miisste dies also auch

dort gelten. Betrachten wir also die Wahrscheinlichkeiten der Aussagen Gv—G bzw. GVvG:
P(Gv—=G) =P(G)+P(—=G)-P(GA-G)=1
P(GvG) =P(G)+P(G)-P(G)=P(G)=0.5

Die Wahrscheinlichkeitstheorie ist also nicht wahrheitswertfunktional und kann daher

nicht dquivalent sein zur fuzzy Logik oder anderen mehrwertigen wahrheitsfunktionalen

Logiksystemen.”

% Vgl. Malinkowski 1993 S 327ff
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6 Nachwort

Der philosophische Nutzen der fuzzy Theorie wurde an Hand der Analyse des Paradoxons des
Sorites ersichtlich gemacht. Dennoch dréngte sich der Verdacht auf, ob man nicht auf diese
verzichten kann, indem man alles, was mittels der fuzzy Theorie ausgedriickt wird, mittels des
Wahrscheinlichkeitskalkiils modelliert. Vor allem Vertreter der Wahrscheinlichkeitslehre wie
Dennis Lindley postulieren diese Mdoglichkeit fuzzy theoretische Ansdtze mittels der
Wahrscheinlichkeitsrechnung zu 16sen. Dass dies — zumindest im allgemeinen Fall — nicht
moglich ist, zeigte die abschlieende Diskussion. Wahrend wir innerhalb der fuzzy Theorie
Theoreme deduzieren konnten, die als Axiome eines Wahrscheinlichkeitskalkiils dienen
konnen, konnten wir dies im umgekehrten Fall nicht tun. Dariliber hinaus zeigten
Uberlegungen im Kapitel 5, dass es fuzzy theoretische MaBe gibt, die durch kein
Wahrscheinlichkeitsmal3 ausgedriickt werden konnen. Ferner konnte gezeigt werden, dass
zwar die fuzzy Theorie extensional, also wahrheitsfunktional ist — hingegen ist es nicht die
Wahrscheinlichkeitslehre. Wahrscheinlichkeitslehre und fuzzy Theorie sind folglich nicht
dquivalente Theorien, die nur verschiedene Interpretationen und Herangehensweisen an

dieselbe Grundidee wiren.

Dieser Schluss erscheint in Anbetracht unserer Analyse verschiedener Arten von
Ungewissheiten als plausibel. Wir stellten fest, dass sich die Wahrscheinlichkeitslehre mit
Ungewissheiten befasst, die von konzeptionell anderer Natur sind als die Ungewissheiten, mit
der sich die fuzzy Theorie beschéftigt. Die Ungewissheit der Wahrscheinlichkeitsrechnung ist
eine Ungewissheit, die sich auf die Unsicherheit zukiinftiger Ereignisse bzw. die Unkenntnis
gegenwirtiger oder vergangener Ereignisse bezieht. Hingegen riihrt die Ungewissheit, die
Gegenstand der fuzzy Theorie ist, von der Vagheit verwendeter Termini. In der fuzzy Theorie
geht es also nicht darum, ob ein Ereignis eintritt oder nicht; in der fuzzy Theorie sind die
Ereignisse, die sie behandelt, nicht scharf konzipiert sondern vage, was zu vollkommen

anderen Problemstellungen fiihrt als in der Wahrscheinlichkeitsrechnung.
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