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Vorwort 
 

 

„The true logic of the world is in the calculus of probabilities.“1 

Diese Worte vom englischen Physiker James Clerk Maxwell aus dem 19. Jahrhundert 

entsprechen einem Weltbild, dass bereits Erfahrungen mit Ungewissheiten in der Natur 

gemacht hat, die sich nur mehr durch stochastische Begriffe formulieren lassen. Die 

Wahrscheinlichkeitstheorie wurde so seit ihrer Entstehung im 17. Jahrhundert 

weiterentwickelt und axiomatisiert; sie präsentiert sich heute als reichhaltige Theorie zur 

Modellierung und Formalisierung von Ungewissheit in verschiedenen Formen. 

Im Jahre 1965 veröffentlichte der Elektrotechniker Lofti Zadeh einen Artikel namens 

„Fuzzy Sets“2 indem er die fuzzy Theorie begründete und erstmals das Konzept einer 

unscharfen Menge vorstellte. Diese Theorie unscharfer Mengen erweist sich heute als 

nützliches Instrument, Vagheit als spezielle Form von Ungewissheit zu modellieren. Bei der 

Begründung der fuzzy Theorie durch Zadeh motivierte ihn dabei die Vorstellung diese neue 

Theorie für die Regelungstechnik nutzbar zu machen und Expertenwissen, das durch 

umgangssprachliche und oftmals vage Regeln ausgedrückt wird, für Entscheidungen in 

technischen Bereichen zu verwenden.3 

Die Anwendungsgebiete der Wahrscheinlichkeitslehre und der fuzzy Theorie lassen als 

Theorien der Ungewissheit Überschneidungen zu, und so gerieten von Beginn an Vertreter 

der Wahrscheinlichkeitslehre und Anhänger der fuzzy Theorie miteinander in Konflikt und 

polemisierten gegeneinander. So schreibt beispielsweise der kanadische Mathematiker 

William Kahan fuzzy Logik sei das Kokain der Wissenschaft und sei gefährlich und falsch.4 

Wahrscheinlichkeitslehre und fuzzy Theorie versuchen nicht nur beide Ungewissheit zu 

modellieren, sie weisen auch auf anderen Ebenen starke Ähnlichkeiten auf. Beides sind 

Theorien, deren Elemente mit Maßen im Wertebereich zwischen 0 und 1 gemessen werden: 

In der Wahrscheinlichkeitstheorie werden Ereignissen Grade der Wahrscheinlichkeit 

zwischen 0 und 1 zugeordnet. In der Theorie der unscharfen Mengen werden Elementen einer 

Menge Zugehörigkeitsgrade zwischen 0 und 1 zugeordnet. Weiters gibt es Versuche sowohl 
                                                 
1 Hajek S 362 
2 Vgl. Zadeh 1965 
3 Vgl. Avenhaus / Seising S  270 
4 Vgl. Kosko 1995 S 13 
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Zugehörigkeitsgrade als auch Wahrscheinlichkeiten als Quotienten von positiven 

Eigenschaften durch mögliche Eigenschaften darzustellen.5 

 

In diesem Sinne ist es durchaus berechtigt nach Zusammenhängen zwischen der fuzzy 

Theorie und der Wahrscheinlichkeitslehre zu suchen, wie es in dieser Arbeit geschehen soll: 

Es wird Vagheit als spezielle Form von Ungewissheit näher analysiert werden und mittels der 

fuzzy Theorie zu modellieren versucht. Weiters wird zu Beginn dieser Arbeit eine 

grundlegende Einführung in die Theorie unscharfer Mengen gegeben, die in späterer Folge 

durch eine weitere Interpretation unscharfer Mengen erweitert werden wird. Auf diese 

Interpretation aufbauend werden einige Maße und Theoreme eingeführt, mit deren Hilfe 

gezeigt werden wird, dass die Wahrscheinlichkeitslehre innerhalb der fuzzy Theorie 

deduzierbar ist. 

Im letzten Kapitel wird durch verschiedene Argumentationen erläutert, warum fuzzy 

Theorie und Wahrscheinlichkeitslehre nicht dasselbe sein können. 

 

In den letzten Jahren hat die fuzzy Theorie in technischen Bereichen wie der 

Regelungstechnik seine Nützlichkeit bewiesen. In vielen technischen Produkten kommt sie 

zum Einsatz und ist daher auch Gegenstand vieler Studienrichtungen technischer 

Universitäten. Es lohnt sich jedoch auch die philosophische Betrachtung dieser Theorie, wie 

es hier geschehen soll. Auf Details aus den Ingenieurswissenschaften wurde deshalb hier 

bewusst verzichtet und eine rein logisch-philosophische Analyse gewählt. 

 

                                                 
5 Vgl. Wang 1993 S 8f 
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1 Strukturelle Einführung in die fuzzy Theorie 
 

„Eine Menge ist eine Zusammenfassung bestimmter, wohlunterschiedlicher Dinge 
unserer Anschauung oder unseres Denkens, welche Elemente der Menge genannt werden, 
zu einem Ganzen6 

Mit diesen Worten definierte Georg Cantor 1895 den Begriff einer Menge und schuf 

damit die Mengenlehre, welche sich als äußerst fruchtbares Mittel zur Konsolidierung der 

Mathematik erwiesen hat. Doch schon bald erwies sich der obige Mengenbegriff als zu 

allgemein und es zeigte sich, dass dieser Widersprüche – wie die Russellsche Antinomie – 

innerhalb der Theorie zulässt. Als Ausweg wählte man einen axiomatischen Zugang, welche 

den Vorteil hat, nicht genau beschreiben zu müssen, was eine Menge ist – eine Menge ist 

einfach ein Objekt, das sämtliche Mengenaxiome erfüllt. Ein weiterer Ausweg könnte eine 

mehrwertige Logik sein, in der sich der Widerspruch nicht ergibt, wie im Kapitel 3.5.1 

ersichtlich gemacht werden wird.7 

Der Prozess der Mengenbildung als Zusammenfassung verschiedener Elemente ist 

jedem von der Schulzeit an geläufig. Man bildet Mengen, indem man deren Elemente aufzählt 

oder eine bestimmende Eigenschaft (Prädikat) anführt, die diejenigen Elemente herausfiltert, 

die diese Eigenschaft erfüllen. Adolf Fraenkel, Mitbegründer des gängigen Axiomensystems 

von Zermelo-Fraenkel, bemerkt dazu folgendes: 

„Eine Menge M ist definiert oder „existiert“, sobald von jedem beliebigen Ding feststeht, 
ob es Element von M ist oder nicht.“8 

Daraus ergibt sich, dass für je zwei gegebene Objekte x und y feststeht, ob x Element 

von y ist oder nicht; man schreibt: x∈y bzw. x∉y. Eine dritte Möglichkeit wird aufgrund des 

Prinzips des ausgeschlossenen Dritten in der klassischen Logik ausgeschlossen. Formal lässt 

sich eine Menge M also schreiben als eine Zusammenfassung verschiedener Elemente, für die 

eine bestimmte Eigenschaft F erfüllt ist, d.h. M = {x | F(x) }. Durch die binäre Logik, auf die 

die Mengenlehre zurückgreift, gilt stets: x erfüllt F oder x erfüllt F nicht. Es lässt sich somit 

eine Menge MC definieren, die all diejenigen Elemente enthält, welche die bestimmende 

Eigenschaft für M nicht erfüllen und das Komplement von M genannt wird; man schreibt MC 

                                                 
6 Deiser 2002 S 13 
7 Vgl. Gottwald 1989 S 291ff 
8 Fraenkel 1927 S 2 
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= {x | ¬F(x) }. Es gilt also stets x ist entweder in M oder in MC enthalten, aber nicht in beiden 

zugleich, also M ∩ MC = {} und M ∪ MC = X für die Grundmenge X.9  

In der klassischen Mengenlehre gelten also Analoga zu Prinzipien der klassischen 

Logik, wie dem Satz vom Widerspruch und dem Prinzip vom ausgeschlossenen Dritten, die 

beide auf das Zweiwertigkeitsprinzip der binären Logik beruhen, das besagt, dass jede 

Aussage genau einen der beiden Wahrheitswerte wahr oder falsch besitzt10. Das Prinzip vom 

ausgeschlossenen Dritten lässt sich folgendermaßen formalisieren: A ∨ ¬A ist eine 

Tautologie; hingegen bedeutet der Satz vom Widerspruch: A ∧ ¬A ist eine Kontradiktion. 

Diese zwei fundamentalen Prinzipien gehen auf Aristoteles zurück, der in seiner Metaphysik 

bemerkt: 

„Unter den Prinzipien des Beweisens verstehe ich die gemeinsamen Grundsätze, auf 
Grund deren man überall einen Beweis führt, z.B. den Grundsatz, daß man notwendig 
jegliches entweder bejahen oder verneinen muß, und daß es unmöglich ist, daß eines und 
dasselbe zugleich sei und nicht sei…“11 

Dies ist ein wesentliches Charakteristikum der klassischen Mengenlehre und Logik und 

es zeigt sich hier ein wesentlicher Unterschied zum Begriff der unscharfen Mengen in der 

Fuzzy Theorie. Während klassische Mengen ein Element entweder enthalten oder nicht, ist 

die Zugehörigkeit eines Elements zu einer fuzzy Menge kontinuierlich darstellbar. Über so 

genannte Zugehörigkeitsfunktionen, welche im folgenden Kapitel noch genauer erläutert 

werden, lässt sich ein Element zu einer Menge mit jedem beliebeigen Wert zwischen 0 und 1 

zuordnen. Eine unscharfe Menge stellt somit eine Erweiterung des klassischen 

Mengenbegriffes dar, da dieser im ersteren enthalten ist, wenn man die Eigenschaft „ist 

Element von“ mit der Zugehörigkeit 1 und deren Gegenteil mit der Zugehörigkeit 0 versieht. 

Mit der fuzzy Theorie gelingt es nun, die Abgrenzung der Elemente einer Menge von 

denjenigen, die keine Elemente dieser Menge sind, kontinuierlich zu ziehen. Gerade diese 

Möglichkeit, ein Objekt einer Menge nicht ganz oder gar nicht zuordnen zu müssen, sondern 

in seiner Zugehörigkeit zur Menge Zwischenwerte annehmen zu können, verleiht der Fuzzy 

Theorie die Möglichkeit die natürliche Welt adäquater zu beschreiben. 

Da in der klassischen Logik seit Aristoteles das Prinzip vom ausgeschlossenen Dritten 

angenommen wird, ist diese kontinuierliche Grenzziehung eine völlig neue Sichtweise für 

Logiker. Sie erlaubt, Alltagsbegriffe besser modellieren zu können, da eine mathematische 

Definition dieser Begriffe den Alltagsvorstellungen oft widerspricht. In der klassischen Logik 
                                                 
9 Vgl. Hasse 1989 S 14f 
10 Vgl. Malinkowsi 1993 S 309 
11 Aristoteles Metaphysik S 40 
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ist ein Mensch entweder schön oder er ist es nicht – dies scheint unserer Auffassung von 

Schönheit zu widersprechen. Mit Hilfe der fuzzy Logik lassen sich differenziertere 

Zuweisungen von Schönheit treffen, bei denen man nicht Menschen als ideal schön oder nicht 

einstufen muss. 

Der polnische Logiker Jan Lukasiewicz, der als einer der ersten das Konzept einer 

zweiwertigen Logik verließ und eine mehrwertige Logik definierte, die mit dem 

aristotelischen Satz vom Widerspruch bricht, beschreibt den Moment der Aufgabe dieses 

Postulats folgendermaßen: 

„Wenn ich mich nicht irre, so nähert sich uns der d r i t t e  Moment in der Geschichte des 
Satzes vom Widerspruch, der alte Versäumnisse behebt. In der Entwicklung der Logik 
kommt dieser Zeitpunkt ebenso notwendig, wie es notwendig in der Entwicklung der 
Geometrie der Zeitpunkt der Revision des Parallelen-Axioms war. Aristoteles hat die 
A n f ä n g e  der Logik geschaffen, und jeder Anfang ist unvollkommen.“12 

Lukasiewicz tritt für eine umfangreiche Diskussion ein, die überprüfen soll, ob der Satz 

vom Widerspruch oder das Prinzip vom ausgeschlossenen Dritten wirklich evident und 

unumgänglich sind oder nicht: 

„Erst dann wird sich zeigen, welchen Stellenwert der Satz vom Widerspruch unter den 
anderen logischen Regeln einnimmt, worauf sich seine Geltung und sein Wert gründen, 
wie weit seine Anwendbarkeit reicht; dann wird es klar werden, ob dieser Satz wirklich 
der höchste von allen ist und als Grundstein für unsere gesamte Logik angesehen werden 
kann, oder ob man ihn auch umwandeln, beziehungsweise gar, ohne ihn zu 
berücksichtigen, ein System einer n i c h t a r i s t o t e l i s c h e n  Logik entwickeln kann, so 
wie durch die Umwandlung des Parallelen-Axioms ein System der 
n i c h t e u k l i d i s c h e n  Geometrie entstand.“13 

Jan Lukasiewicz hat somit zu Beginn des 20. Jahrhunderts erstmalig in der Geschichte 

des abendländischen Denkens den Weg der zweiwertigen Logik des Aristoteles verlassen und 

bereits selbst ein System mehrwertiger Logik definiert und somit einen Grundstein für die 

spätere Entwicklung der fuzzy Theorie gelegt. 

                                                 
12 Lukasiewicz 1993 S 5 
13 Lukasiewicz 1993 S 6f 
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1.1 Beispiel klassischer und unscharfer Mengen 

Betrachtet man die Bevölkerung eines Staates, stellt sich oft die Aufgabe diese in zwei 

Gruppen zu teilen, etwa in eine der Erwachsenen und eine der Kinder. Der juristische Weg 

zur Lösung dieser Aufgabe geschieht über die Einführung der Begriffe voll- und 

minderjährig. Man teilt nun die Bevölkerung in die Menge der Volljährigen, das ist also die 

Menge all derjeniger, die bereits das 18. Lebensjahr überschritten haben, und die Menge der 

Minderjährigen, also alle, die noch keine 18 Jahre alt sind. Das mag in vielen Situationen 

durchaus sinnvoll sein, doch ergibt sich auch die skurrile Situationen einen 17jährigen, der 

einen Tag vor seinem 18. Geburtstag steht, als minderjährig zählen zu müssen, während er am 

Tag darauf zu den Volljährigen zählt. Seine rechtliche Situation hat sich somit von einem zum 

anderen Tag gewandelt, während sein subjektives Empfinden während dieser zwei Tage sich 

wohl kaum geändert hat. Diese Mengeneinteilung basiert auf dem klassischen Mengenbegriff; 

von jedem Menschen steht zweifelsfrei fest, ob er zur Menge der Volljährigen oder der der 

Minderjährigen zählt. 

Mittels der unscharfen Mengen kann man nun diesen abrupten Wechsel vermeiden, da 

man die Zugehörigkeit zur Menge der Erwachsenen kontinuierlich gestalten kann. Durch die 

Definition einer Zugehörigkeitsfunktion ist es etwa möglich, 14jährigen eine Zugehörigkeit 

von z.B. 0.2, 18jährigen von 0.8 und 40jährigen von 1 zuzuweisen. Dabei ergibt sich, dass 

hier die 18jährigen eine Zugehörigkeit von 0.8 zu den Erwachsenen, zeitgleich aber eine 

Zugehörigkeit von 0.2 zu den Kindern haben. 

Beide Zugänge zur Einteilung haben ihre Vorzüge und beide haben ihre Nachteile. Bei 

dem Zugang über die unscharfen Mengen stellt sich etwa die Frage, wie man zu den genauen 

Werten der Zugehörigkeit gelangt. Warum wählt man 0.8 und nicht etwa 0.7998 als 

Zugehörigkeit des 18jährigen? Auf diese Vor- und Nachteile der Fuzzy Theorie wird nun im 

Laufe dieser Arbeit eingegangen werden und es wird versucht werden, zu klären, inwieweit 

diese der klassischen Logik über- bzw. unterlegen ist. 
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2 Formale Einführung in die fuzzy Theorie 
Die Definition einer unscharfen Menge geht auf den Elektrotechniker Lofti Zadeh zurück, der 

1965 den Aufsatz „Fuzzy Sets“ publizierte, in dem er erstmals das Konzept der fuzzy Theorie 

präsentierte.14 Schon eingangs wurde erklärt: 

„A fuzzy set is a continuum of grades of membership. Such a set is characterized by a 
membership (characteristic) function which assigns to each object a grade of 
membership ranging between zero and one.”15 

Im vorhergehenden Kapitel wurde angedeutet, dass in einem gewissen Sinne die 

unscharfe Mengenlehre als Erweiterung der klassischen angesehen werden kann; hier sei nun 

angemerkt, dass die Definition einer unscharfen Menge jedoch ihrerseits bereits das Konzept 

der klassischen Menge voraussetzt, welche in ihrer Definition eingeht. 

Voraussetzung einer unscharfen Menge ist eine klassische, scharfe Grundmenge X, 

deren Elemente herangezogen werden. Für die Elemente dieser Grundmenge wird nun eine 

Zugehörigkeitsfunktion μ definiert, welche die Zugehörigkeit der einzelnen Elemente zur 

neuen fuzzy Menge angibt. Dann ist die Menge aller Zahlenpaare (x; μ(x))  

A := { }1)(0,)(;( ℜ∈≤≤∈ xXxxx μμ  

eine unscharfe Menge. X ist dabei die Grundmenge und μ die Zugehörigkeitsfunktion, 

welche reelle Werte annimmt; konventionell beschränkt man μ auf Werte zwischen 0 und 1, 

wobei ein höherer Wert jeweils einer höheren Zugehörigkeit entspricht. 

Die Aufstellung der Zugehörigkeitsfunktion ist ein subjektiver Akt und wird in der 

Praxis nicht eindeutig bestimmt sein. Aufgrund der sprachlichen Unschärfe der 

Charakterisierung einer fuzzy Menge kann nur ein unscharfes Kriterium bestimmt werden, 

welches den Elementen x∈X die entsprechenden μ Werte zuordnet.16 

Darin besteht jedoch keinesfalls ein großer Nachteil gegenüber anderen mathematischen 

Theorien, die in der Praxis angewandt werden. Wahrscheinlichkeitsverteilungen sind 

ebenfalls bis zu einem gewissen Grad beliebig und subjektiv gewählt, da man die exakten 

Wahrscheinlichkeitswerte – falls solche überhaupt existieren – nicht berechnen kann. Auch in 

mathematischen Modellen mittels Differentialgleichungen werden Annahmen getroffen und 

die Gleichungen werden hinsichtlich einer leichten Lösbarkeit adaptiert. Die Forderung nach 

einem exakt definierten Verfahren zur Bestimmung der Zugehörigkeitswerte einer fuzzy 
                                                 
14 Vgl. Zadeh 1965 
15 Zadeh 1965 S 338 
16 Vgl Bothe 1995 S 27f 
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Menge erscheint somit als übertrieben. Die Festlegung auf bestimmte Zugehörigkeitswerte 

muss also – wie bei anderen Theorien – nicht eindeutig sein. In der Anwendung zeigt sich 

darüber hinaus, dass der Einfluss der exakten Werte der Zugehörigkeitsfunktion gering ist.17 

Innerhalb der unscharfen Mengenlehre können bekannte Begriffe der klassischen 

Mengenlehre eingeführt werden; so z.B. die unscharfe leere Menge oder die unscharfe 

Potenzmenge.18 Ferner werden im Folgenden Operationen auf fuzzy Mengen definiert. 

2.1 Operationen auf unscharfen Mengen 

Für eine fuzzy Menge A mit einer Zugehörigkeitsfunktion µ definiert man das Komplement 

von A durch 

AC := )}(1)(,)(;{( xµxXxxx −=∈ λλ  

Man erkennt leicht, dass (AC)C = A gilt. Anhand der Definition erkennt man ebenso, die 

bereits erwähnte Eigenschaft unscharfer Mengen, Elemente mit dem mengentheoretischen 

Komplement gemein haben zu können, also A∩AC ≠ {} und A∪AC ≠ X für eine unscharfe 

Menge A ⊆ X 

 

Für A,B ⊆  X mit Zugehörigkeitsfunktionen μA bzw. μB definiert man nun 

 A∩B mittels μA∩ B = min{μA(x), μB(x)} (Durchschnitt) und 

 A∪B mittels μA∪ B = max{μA(x), μB(x)} (Vereinigung) 

Linguistische Verknüpfungen wie „nicht“, „und“ bzw. „oder“ werden in Analogie zur 

Booleschen Algebra durch die mengentheoretischen Operatoren Komplement, Durchschnitt 

bzw. Vereinigung realisiert. Ebenso übertragen sich die de Morganschen Regeln auf die 

unscharfen Mengen.19 

2.2 Unscharfe Teilmengen 

In der klassischen Mengenlehre ist eine Menge A in B enthalten (A ⊆ B), falls sämtliche 

Elemente von A auch Elemente von B sind. Äquivalent dazu ist die Charakterisierung von A 

⊆ B durch A∈2B, also dass A in B enthalten ist, falls A Element der Potenzmenge von B ist. 

                                                 
17 Vgl. Avenhaus / Seising S 279 
18 Vgl ebenda S 29ff 
19 Vgl Bothe 1995 S 38ff 
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Natürlich kann man nun auch für unscharfe Mengen die Inklusionsrelation definieren: Seien 

A und B ⊆  X nun fuzzy Mengen mit Zugehörigkeitsfunktionen μA bzw. μB, dann gilt: 

A ⊆ B genau dann, falls μA(x)≤ μB(x) für alle x∈A.20 

Die Inklusionsrelation ⊆ ist hierbei eine binäre zweiwertige Relation: Eine fuzzy Menge 

ist Teilmenge einer anderen oder sie ist es nicht – ein Drittes gibt es nicht. Das Konzept der 

Teilmengigkeit unscharfer Mengen ist also selbst scharf und nicht fuzzy. Im Gegensatz zu 

diesem Inklusionsbegriffs Zadehs wird in Kapitel 4.2 die Beziehung ⊆ als unscharfe Relation 

eingeführt werden. 

2.3 Fuzzy Logik 

In der bisherigen Diskussion wurde ersichtlich, dass das Konzept einer fuzzy Menge allein 

auf der Annahme beruht, dass die Beziehung ∈ (Element von) nicht zweiwertig ist, sondern 

vielmehr jeden beliebigen Wert zwischen 0 (falsch) und 1 (wahr) annehmen kann. In der 

Theorie der unscharfen Mengen wird von ∈ als zweistelligem Prädikat nicht verlangt, dass 

ihm nur wahr und falsch als Wahrheitswerte zugeordnet werden kann; alle anderen Aussagen 

und Prädikate bleiben hingegen zweiwertig.21 

Ersetzt man nun die zweiwertige Logik durch eine unendlich-wertige Logik, ergibt sich 

nicht nur an das Prädikat ∈ die Forderung der Zulassung sämtlicher Zahlen aus dem 

Einheitsintervall als Wahrheitswerte, sondern darüber hinaus an alle logischen Junktoren. 

Gibt es unendlich viele Wahrheitswerte, kann keine Tabelle mehr – wie im Falle der 

zweiwertigen Logik – als Definition der Semantik dienen. Zur Bestimmung der Bewertung 

der logischen Junktoren wird nun eine Abbildung von [0,1]×[0,1]→[0,1] definiert, die jedem 

Wahrheitswertepaar, bestehend aus den Wahrheitswerten der Teilsätze des Aussagenpaares, 

den entsprechenden Wahrheitswert der zusammengesetzten logischen Aussage zuordnet.22 

 

Wie es in der klassischen Logik einen engen Zusammenhang zur klassischen 

Mengenlehre gibt, so ergibt sich auch in der Theorie der unscharfen Mengen ein enger 

Zusammenhang zum unendlich-wertigen Logiksystem der fuzzy Logik. Dieser 

Zusammenhang ergibt sich vermöge der Deutung des Enthaltenseingrades des Elements x∈A 

                                                 
20 Vgl. Zadeh 1965 S 340 
21 Vgl. Kruse / Gebhardt / Klawonn 1993 S 55 
22 Vgl. Kruse / Gebhardt / Klawonn 1993 S 55f 
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(μA(x)) als Wahrheitswert. Hierzu definiert man das mehrwertige zweistellige Prädikat ∈ 

durch die Festlegung  

|x∈A| := μA(x), 

wobei die Schreibweise von |x∈A| durch Betragsstriche hier den Wahrheitswert 

bedeutet. Aus dieser Definition ergeben sich ferner folgende Zusammenhänge 

|x ∈ A∩B| = μA∩B(x) 

|x ∈ A∪B| = μA∪B(x) 

|⌐ x ∈ A| = μA
C(x).23 

Hiermit ergibt sich nun der Zusammenhang der Theorie der fuzzy Mengen und der 

fuzzy Logik selbst. 

 

 

                                                 
23 Vgl. Gottwald 1989 S 301f 
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3 Vagheit als spezielle Form der Ungewissheit 

3.1 Die Paradoxie des Sorites 

Eubulides von Milet soll im vierten Jahrhundert v. Chr. den so genannten Sorites eingeführt 

haben; das griechische Wort sorós bedeutet Haufen. Sorites steht heute noch allgemein für 

Paradoxien, die durch Verwendung des Kettenschlusses auftreten24; der Kettenschluss ist eine 

wiederholte Anwendung des Schlusses A→B und B→C, ergo A→C. Beim Problem des 

Sorites wird wesentlich davon Gebrauch gemacht, dass als gültige Antwort auf eine 

Entscheidungsfrage nur „Ja“ oder „Nein“ zugelassen wird. Umgangssprachliche 

Zwischenformen wie „Naja“, „eher ja“ oder „eher nein“ sind als Antworten nicht möglich. 

Dann präsentiert sich der Sorites in folgender Form: 

Frage: Bildet ein Korn einen Haufen? 

Antwort: Nein. 

Frage: Bilden zwei Körner einen Haufen? 

Antwort: Nein. 

Frage: Verwandelt also die Zufügung nur eines einzelnen Kornes etwas in einen 

Haufen? 

Antwort: Nein. 

Also bildet keine Anzahl an Körnern einen Haufen.25 

Der Kern des Problems besteht darin, dass „Haufen“ kein klar definierter Begriff ist. 

Somit macht auch eine exakt bestimmte Grenze, die bestimmt, ab wie vielen Körnern etwas 

ein Haufen wird, keinen Sinn. Genauso wenig macht es Sinn, auf die Frage „Ab wie wenigen 

Haaren trägt man eine Glatze?“ eine exakte numerische Antwort zu geben. 

Historisch gesehen ist das Paradoxon des Sorites eines der ersten Überlegungen zum 

Problem der Vagheit der Begriffe.26 Über zweitausend Jahre später formuliert der deutsche 

Mathematiker und Philosoph Gottlob Frege in den Grundgesetzen der Arithmetik 

folgendermaßen: 

„Eine Definition eines Begriffes (möglichen Prädikats) muss vollständig sein, sie muss 
für jeden Gegenstand unzweideutig bestimmen, ob er unter den Begriff falle (ob das 

                                                 
24 Vgl. Sainsbury 1993 S 39 
25 Vgl Buldt S 48ff 
26 Vgl. Buldt S 41ff 
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Prädikat mit Wahrheit von ihm ausgesagt werden könne) oder nicht. Es darf also keinen 
Gegenstand geben, für den es nach der Definition zweifelhaft bliebe, ob er unter den 
Begriff fiele, wenn es auch für uns Menschen bei unserem mangelhaften Wissen nicht 
immer möglich sein mag, die Frage zu entscheiden. Man kann das bildlich so 
ausdrücken: der Begriff muss scharf begrenzt sein … Einem unscharf begrenzten Begriffe 
würde ein Bezirk entsprechen, der nicht überall eine scharfe Grenzlinie hätte, sondern 
stellenweise ganz verschwimmend in die Umgebung überginge.“27 

Klassische Gesetze der Aussagenlogik, wie das Gesetz vom ausgeschlossenen Dritten 

oder das Prinzip der Kontraposition, benötigen das obige Postulat, da diese wichtigen Gesetze 

der binären Logik sonst an Gültigkeit verlören.28 Frege schreibt hierzu: 

„Das Gesetz vom ausgeschlossenen Dritten ist ja eigentlich nur in anderer Form die 
Forderung, dass der Begriff scharf begrenzt sei.“29 

Ein sprachlicher Ausdruck ist also vage, falls die Grenzen seiner Anwendbarkeit nicht 

scharf definiert sind; falls seine Anwendbarkeit nicht in jeder Situation grundsätzlich 

zweifelsfrei geklärt ist, das heißt prinzipiell zweifelsfrei geklärt werden kann.30 Ob man seine 

Anwendbarkeit – bei mangelhaftem menschlichen Wissen –  tatsächlich klären kann, ist nicht 

entscheidend. 

 

Begriffe wie „Haufen“ sind also vage und nicht exakt bestimmt. Qualitative Begriffe 

wie „rot“, „schön“ oder „groß“ werden ebenfalls als vage eingestuft werden, wenn man über 

sie nachsinnt. Doch wie ist das bei quantitativen Termini? Ist „Meter“ oder „Sekunde“ ein 

präziser Begriff? Bertrand Russell schreibt in seinem 1923 verfassten Aufsatz „Vagueness“, 

dass auch solch quantitative Termini vage sind, da sie nur unzureichend präzise definiert 

werden können. Wenn der Meter als ein gewisser Abstand zwischen zwei Marken eines 

bestimmten Stabes in Paris mit einer gewissen Temperatur definiert wird, dann enthält auch 

diese Definition Vagheit, denn die Marken sind keine Punkte, und die Temperatur kann nicht 

exakt bestimmt werden. Deshalb sind – so folgert Russell – alle nicht logischen Begriffe 

vage; insbesondere sind „wahr“ und „falsch“ vage. Doch aus dieser Vagheit der Begriffe 

„Wahrheit“ und „Falschheit“ folgt implizit auch die Vagheit der logischen Begriffe, die über 

diese definiert werden.31 

Geht man davon aus, dass alle Begriffe mehr oder weniger vage sind, stellt sich die 

Frage nach der Vagheit des Begriffs „Vagheit“. Mit der obigen Argumentation macht es 

                                                 
27 Frege 1966 S 69 
28 Vgl. Buldt S 66f 
29 Frege 1966 S 69 
30 Vgl. Luzzati 1999 
31 Vgl. Russell 1923 



16 

wenig Sinn, davon auszugehen, dass „vage“ exakt definierbar und die Menge aller vagen 

Begriffe eine klar zu bestimmende Menge sei. Dies führt zu folgender Unterscheidung: 

Vagheit erster Stufe befasst sich mit der Vagheit der Begriffe, wie es in dem 

vorangegangenen Absatz getan wurde. Die Vagheit zweiter Stufe befasst sich mit der Vagheit 

des Begriffs „Vagheit“ selbst. Diese Vagheit zweiter Stufe ist umstritten; die eine Seite hält 

sie für unumgänglich und sogar als konstitutives Element echter Vagheit, die andere Seite 

meint, sie umgehen zu können. 

Kehrt man zurück zur Paradoxie des Sorites, lässt sich die Frage nach der Existenz der 

Vagheit zweiter Stufe veranschaulichen: 

Man ist sich gemeinhin einig, dass ein Korn alleine kein Haufen ist. Ebenso wird man 

sich einig sein, dass 100.000 Körner ein Haufen sind. Von nun an stehe das Prädikat H(n), zur 

kompakteren Schreibweise, für die Eigenschaft „n Körner sind ein Haufen“. Es gilt also 

H(100.000) und ¬H(1). Da der Begriff „Haufen“ vage ist, lässt sich keine scharfe Grenze 

zwischen Haufen-Sein und Nicht-Haufen-Sein ziehen, das heißt, es gibt keine natürliche Zahl 

ω mit 1<ω<100.000, sodass H(n) für n>ω und ¬H(n) für n<ω. 

Aufgrund der Vagheit von „Haufen“ gibt es also stets einen Bereich an ξ∈N, für die 

nicht exakt bestimmbar ist, ob H(ξ) oder ¬H(ξ) gilt. Verneint man nun die Vagheit zweiter 

Stufe, geht man von der Existenz zweier natürlicher Zahlen ω1, ω2 aus, die diesen Bereich der 

Unsicherheit exakt eingrenzen. 

Es gilt also für ξ<ω1:  ¬H(ξ) 

 ω1<ξ<ω2: Es ist unsicher, ob ξ Körner ein Haufen sind. 

 ω2<ξ:  H(ξ) 

Dieser abrupte Wechsel zwischen sicherem Haufen-Sein und unsicherem Haufen-Sein 

ist allerdings genauso wenig zufriedenstellend wie ein abrupter Wechsel zwischen Haufen-

Sein und Nicht-Haufen-Sein. Eine Vagheit zweiter Stufe scheint also, wenn nicht evident, so 

doch wenigstens naheliegend zu sein. 32 

 

                                                 
32 Vgl. Buldt S 47f 
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3.2 Drei Arten der Vagheit 

Kehren wir nun zur Vagheit erster Stufe zurück. Es gibt drei verschiedene Möglichkeiten, 

Vagheit aufzufassen: erstens als eine ontologische Vagheit. Deutet man auf einen Menschen 

und behauptet man, das sei Herr Q, dann stellt sich die Frage, ob das auch Herr Q ist, wenn 

ihm ein paar Haare ausgegangen sind, oder sich sonst eine kleine Veränderung an ihm 

ereignet hätte. Ab wann ist dann Herr Q nicht mehr Herr Q? Dies ist eine wichtige Frage und 

motiviert eine weitere interessante Fragestellung: Gibt es vage Gegenstände? Wenn man auf 

einen Berg in der Umgebung deutet und fragt, wo denn der Berg beginnt und die Ebene 

aufhört, erkennt man, dass Berge als Teil der Wirklichkeit vage Begrenzungen haben. Daraus 

muss jedoch nicht folgen, dass der Berg an sich tatsächlich vage ist – es könnte auch nur das 

Wort „Berg“ vage sein.33 

Als zweite Art der Vagheit ergibt sich die sprachliche: „Herr Q ist dick“ ist eine 

Aussage, die sich nicht durch empirische Daten messen lassen wird; Dicksein ist an sich nicht 

exakt bestimmbar und befindet sich in einem prädikativen Halbschatten, kann also weder 

durch empirische noch durch begriffliche Untersuchungen bestimmt werden (Russell sprach 

anstelle von prädikativen Halbschatten von einer Penumbra). 

Eine dritte Art der Vagheit ist von sprachpragmatischer Natur: Nicht die Sprache ist 

vage, sondern ihr Gebrauch. Die Sprache als Abbild der Welt ist nach dieser Auffassung in 

der Lage die Welt so zu beschreiben, wie sie ist; geht man also von keiner ontologischen 

Vagheit aus, ergibt sich auch keine Vagheit der Sprache. Was vage ist, ist der Gebrauch der 

Sprache, da der Mensch aus Zeit- und Energiegründen die sprachlichen Möglichkeiten nicht 

voll ausschöpfen kann und die Sprache nur unvollständig anwendet. So wäre z.B. eine 

Unterscheidung des Terminus „Haufen“ in beliebig viele unterschiedliche Termini für Ein-

Korn-Haufen, 2-Körner-Haufen,…, 1-Million-Körner-Haufen, etc. theoretisch denkbar, um 

die Problematik im Paradoxon des Sorites zu vermeiden. Denkt man an das bekannte Gerücht, 

dass Eskimos angeblich über zwanzig verschiedene Wörter für unser deutsches „weiß“ 

kennen34, erkennt man den Kern des Arguments. Die Sprache ist in der Lage Exaktheit 

beliebig genau zu approximieren; mit der Anwendung dergleichen wird jedoch Vagheit 

eingeführt, die nicht von der Sprache herrührt, sondern vom Anwender selbst, der die Sprache 

vage verwendet. 

                                                 
33 Vgl. Sainsbury 1993 S 69ff 
34 Vgl. Radtke 
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3.3 Andere Arten der Ungewissheit 

Ungewissheit ist laut Duden35 ein Zustand, in dem etwas nicht feststeht; das heißt, in dem 

nicht entscheidbar ist, ob etwas gilt oder nicht, ob etwas wahr ist oder nicht. Vages Wissen – 

oder unscharfes Wissen – ist – wie wir gesehen haben – ungewiss im Sinne der Definition. 

Das Phänomen der sprachlichen Vagheit oder Unschärfe lässt sich allerdings von anderen 

Arten der Ungewissheit unterscheiden: von Mehrdeutigkeit (Ambiguität), von Allgemeinheit, 

von Unspezifität (Ungenauigkeit) und auch von Relativität. 

Zur Erklärung sollen hier Beispiele dienen: Der Satz „Ich gehe zur Bank.“ ist nicht 

vage, sondern mehrdeutig, falls „Bank“ nicht näher bestimmt ist und nicht klar ist, ob etwa 

eine Sitzgelegenheit oder ein Geldinstitut gemeint ist. Diese Unbestimmtheit lässt sich aber 

durch eine genauere Bestimmung leicht aufklären. Mehrdeutigkeit ist also nur in dem Sinne 

ungewiss, da im Moment nicht klar entschieden werden kann, ob die Behauptung wahr oder 

falsch ist. Mit einer genaueren Beschreibung lässt sich diese Ungewissheit schnell beheben. 

Allgemeinheit ruft im folgenden Satz Ungewissheit hervor: „Dieser Mensch isst gerne 

Spaghetti“ – hier kommt „Mensch“ als Allgemeinbegriff vor und somit ist z.B. sein 

Geschlecht – männlich oder weiblich – nicht näher bestimmt; deshalb ist „Mensch“ aber nicht 

vage, sondern eben nur allgemein, was ebenfalls zu einer momentanen Ungewissheit führt, 

die schnell und einfach zu beheben ist, etwa durch Ergänzungen und Spezifikationen. 

Ungenauigkeit ist eine weitere Art von Ungewissheit, die deutlich von Vagheit 

differenziert werden muss. Der Satz „Karl wiegt zwischen fünf und fünfhundert Kilogramm.“ 

ist unbestimmt, nicht weil der Ausdruck vage, sondern weil seine Grenzen zu unspezifisch 

sind; sie sind nicht verschwommen, sondern einfach zu wenig präzise.36 Diese Unspezifität, 

Impräzision oder Ungenauigkeit lässt sich durch die in der Praxis oftmals herrschende 

Situation der Unmöglichkeit der Feststellung eines beliebigen Grades an Genauigkeit 

erklären. Wenn ein Instrument nicht klein genug skaliert ist, gibt es Grenzen der Messbarkeit, 

die Impräzision ergeben. Im Falle der Darstellung irrationaler Zahlen ist Impräzision per se 

unvermeidbar und tritt somit im täglichen Leben wie auch im wissenschaftlichen Alltag 

unvermeidbar auf. Ungenauigkeit ist folglich nicht vermeidbar, weshalb sich die Frage nach 

der bestmöglichen Behandlung dergleichen stellt. In der Praxis beschreibt man derartige 

                                                 
35 Duden Stichwort „Ungewissheit“ 
(http://www.duden.de/suche/index.php?begriff=Ungewissheit&bereich=mixed&pneu=#inhalte) 
36 Vgl. Buldt S 41 
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impräzise Informationen durch nichtstochastische Fehlerintervalle, die man auch als 

Spezialfall von unscharfen Mengen auffassen kann.37 

Das Phänomen der Vagheit ist grundlegend vom Phänomen der Relativität verschieden, 

auch wenn diese beiden Phänomene oftmals gemeinsam auftreten. Im Satz „Der Mann ist 

groß.“ ist das Adjektiv „groß“ sowohl vage als auch relativ. Im Unterschied zur Vagheit lässt 

sich die Relativität durch Zusatzinformation beheben. Der Ausdruck „Der Mann ist groß.“ ist 

kontext- und kulturbezogen: Fällt der Satz innerhalb eines Pygmäenstammes, hat er eine 

andere Bedeutung als beispielsweise in Mitteleuropa. Der Satz mag auch unterschiedliche 

Bedeutungen in Schweden und Italien haben, wo die Menschen gemeinhin als größer bzw. 

kleiner gelten. Unter Pygmäen wird eine Körpergröße als groß gelten, die mit Sicherheit in 

Europa als nicht groß gilt. Diese Relativität im Satz „Der Mann ist groß“ lässt sich aber durch 

Zusätze wie zum Beispiel „Dieser Mann ist groß für einen Österreicher“ beheben. Die 

Vagheit des Satzes lässt sich nicht beheben. Oftmals tritt Relativität auch ohne Vagheit auf: 

Das Prädikat „ist überdurchschnittlich groß“ ist ein relatives, aber kein vages. 

Überdurchschnittlich groß ist jemand, der größer ist als der Durchschnitt – und die statistische 

Durchschnittsgröße ist ein Wert, der sich exakt bestimmen lässt. Dieses Prädikat ist also nicht 

vage, sondern nur relativ, da erst der Kontext bzw. die Menge, deren Durchschnittsgröße 

gemeint ist, spezifiziert werden muss.38 

 

Eine weitere Art der Ungewissheit ist mit dem Begriff des Zufalls verbunden, der uns durch 

Würfelexperimente, Lottoziehungen und dergleichen vertraut ist. Diese spezielle mit 

Zufallsmechanismen verbundene Ungewissheit wird in einem späteren Kapitel noch 

eingehend diskutiert und deren Unterschied zur Vagheit herausgearbeitet werden. 

3.4 Unterschiede zwischen Vagheit und auf Zufall 
basierender Ungewissheit 

Das Phänomen der Ungewissheit, wie es in natürlichen Sprachen auftritt, wurde als solches in 

der Vergangenheit zu ungenau unterschieden. Vagheit als subjektive Ungewissheit, die nicht 

objektivierbar ist, wurde nicht als spezielle Form betrachtet und wird erst durch die 

Entwicklung der Fuzzy Theorie adäquat formalisiert.39 Diese subjektive Ungewissheit, die 

Gegenstand der Fuzzy Theorie ist, ist eine Ungewissheit prinzipieller Natur, die im Gegensatz 

                                                 
37 Vgl. Kruse/Gebhardt/Klawonn 1993 S 3 
38 Vgl. Sainsbury 1993 S 41f 
39 Vgl. Mukaidono 2004 S 95 
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zu ungenauem oder mehrdeutigen Wissen nicht behebbar ist. Weder Spezifizierung noch 

Beobachtungen oder theoretische Überlegungen reduzieren Vagheit. Die Ungewissheit, die 

Gegenstand der Wahrscheinlichkeitstheorie ist, rührt von einer Unkenntnis der Zukunft – die 

wird durch Kenntnis der Zukunft aufgehoben. Ist es heute ungewiss, ob es morgen schneit, ist 

dies morgen nicht weiter unklar, sondern gewiss. Die Frage, welche Augenzahl nach dem 

Wurf eines Würfels aufscheinen wird, ist lediglich vor dem Wurf interessant; vor dem Wurf 

beträgt die Wahrscheinlichkeit für eine bestimmte Augenzahl zwischen eins und sechs, bei 

einem fairen Würfel genau ein Sechstel. Nach dem Wurf ist der Sachverhalt geklärt und die 

Ungewissheit verschwunden; entweder es liegt die bestimmte Augenzahl obenauf oder nicht. 

Bei Vagheit ist eine breitere Kenntnis der Zukunft irrelevant. Bei dem Problem, ab wann eine 

Ansammlung Körner ein Haufen ist, ist es unwichtig, ob man die Körner tatsächlich 

angehäuft hat oder nicht. Die Frage, ab wann Körner einen Haufen bilden, ist per se 

interessant und zeitlos. 

Ein Beispiel möge den Unterschied zwischen Ungewissheit der Fuzzy Theorie und der 

Wahrscheinlichkeitsrechnung veranschaulichen: Wenn ich mich frage, ob mein Nachbar – 

den ich nicht kenne – größer als 1.80 Meter groß ist, lässt sich dies mittels der 

Wahrscheinlichkeitsrechnung gut behandeln. Man nimmt Bevölkerungsstatistiken zu Rate 

und errechnet, wie groß die Wahrscheinlichkeit ist, dass ein Grazer Mann größer als 1.80 ist. 

Die Ungewissheit in der Behauptung „Mein Nachbar ist größer als 1.80.“ wird durch die 

Angabe einer Wahrscheinlichkeit modelliert. Lerne ich meinen Nachbarn kennen, kann ich 

ihn messen, erfahre ich seine tatsächliche Größe und kann die gestellte Frage nun eindeutig 

klären. Die Wahrscheinlichkeit, mit der mein Nachbar größer als 1.80 ist, spielt nunmehr 

keine Rolle mehr – entweder mein Nachbar ist nun größer oder nicht. 

Von ganz anderer Art Ungewissheit ist die Behauptung „Mein Nachbar ist groß.“ Hier 

ist nicht die Frage ungeklärt, ob dies der Fall ist oder nicht, sondern vielmehr die Bedeutung 

des Wortes „groß“ an sich ist ungeklärt. Hier hilft es nicht, dass ich den Nachbarn kennen 

lernen und ihn messen kann; „groß“ ist ein vages Adjektiv und die Frage, wer groß ist oder 

nicht, ist subjektiv.  

 

Wenn wir nun die Wahrscheinlichkeit eines Ereignisses angeben, tun wir dies, da wir 

nicht wissen, ob dieses Ereignis nun tatsächlich eintritt oder nicht. Diese Unkenntnis der 

Zukunft, dieses Unwissen, ob das Ereignis nun eintritt oder nicht, ist reduzierbar, falls man 

den Wissensstand erhöht; man kann dazu Statistiken durchführen oder Versuche machen. 
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Ebenfalls können theoretische Überlegungen die Ungewissheit mindern und die 

Wahrscheinlichkeitsprognosen genauer machen, z.B. mittels Theoreme der 

Wahrscheinlichkeitslehre. 

Dies alles führt im Falle der Vagheit zu keiner Verminderung der Ungewissheit; weder 

können theoretische Überlegungen noch Versuche und Beobachtungen vage Begriffe 

spezifizieren. 

3.5 Versuche Vagheit zu formalisieren 

“All traditional logic habitually assumes that precise symbols are being employed. It is 
therefore not applicable to this terrestrial life, but only to an imagined celestial 
existence.”40 

Mit diesen Worten kritisiert Bertrand Russell die klassische Logik und deren Annahme 

präziser Begriffe. Es stellt sich nun die Frage, wie man vage Begriffe besser beschreiben 

kann. 

Aufgrund der hohen Akzeptanz, Bewährtheit und Klarheit der klassischen binären 

Logik soll bei dem Versuch, eine Logik zu finden, die das Phänomen der Vagheit besser 

modellieren kann, die klassische Logik nicht aufgegeben werden, das heißt sie soll mitunter 

als Spezialfall einer neuen Logik ihre Gültigkeit bewahren. 

Im Folgenden sollen Logiken präsentiert und diskutiert werden, die versuchen, das 

Konzept der Vagheit zu modellieren. 

3.5.1 3-wertige Logik 

In der binären Logik ist jede Behauptung entweder wahr oder falsch; ein drittes gibt es nicht 

(tertium non datur). Dies nennt man das Zweiwertigkeitsprinzip der klassischen binären 

Logik41. Dies impliziert jedoch nicht, dass von jeder Behauptung auch eindeutig festgestellt 

werden kann, ob sie wahr oder falsch ist – die Behauptung ist wahr oder falsch, nur kann dies 

eventuell nicht festgestellt werden. Es gibt Sätze empirischen Inhalts, von denen nicht 

festgestellt werden kann, welchen Wahrheitswert sie besitzen. Beispiel hierfür sei die 

Behauptung „Aristoteles hatte die Blutgruppe A positiv.“ Ferner können Sätze 

metaphysischen Inhalts wie zum Beispiel über die Existenz Gottes weder verifiziert noch 

falsifiziert werden; das Zweiwertigkeitsprinzip impliziert jedoch, dass auch diese Sätze wahr 

oder falsch sind, unabhängig von der Möglichkeit der Feststellung des Wahrheitswertes. 

                                                 
40 Russell 1923 
41 Vgl. Gottwald 1989 S 1 
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Nun ist es der prädikative Halbschatten, der ein vages Prädikat nicht zweifelsfrei als 

wahr oder falsch erkennbar macht. Als Folge könnte man in naheliegender Weise die 

zweiwertige Logik um einen weiteren Wahrheitsgrad – der zwischen wahr und falsch liegt – 

erweitern. So wird in der 3-wertigen Logik des Jan Lukasiewicz, die als Beginn mehrwertiger 

Logiksysteme angesehen werden kann, neben den Wahrheitswerten wahr (1) und falsch (0) 

unbestimmt (0.5) als dritter Wahrheitswert eingefügt, um so den prädikativen Halbschatten 

vager Prädikate abzudecken. Doch reicht die Anwendbarkeit des dritten Wahrheitswertes 

noch weiter. Im klassischen Beispiel des unbestimmten Wahrheitswertes des Lukasiewicz 

„Ich werde Weihachten nächsten Jahres in Warschau sein“ ist kein vager Begriff, kein vages 

Prädikat vorhanden – dennoch ist die Behauptung ungewiss und eine Zuordnung der 

Wahrheitswerte wahr und falsch erscheint zum jetzigen Zeitpunkt als inadäquat. Die 3-

wertige Logik erscheint also prima vista in der Lage, nicht nur Vagheit sondern, noch 

allgemeiner Ungewissheit formalisieren zu können. 

Weiters ist die 3-wertige-Logik in der Lage die Russellsche Antinomie, der Menge aller 

Mengen, die sich nicht selbst enthalten, zu formulieren; jedoch ist die Antinomie in der 3-

wertigen Logik nicht länger kontradiktorisch. Dies ist leicht einzusehen, wie folgende 

Argumentation zeigt. Wenn man die Menge aller Mengen, die sich selbst nicht enthalten, 

formalisiert, erhält man R:={x| x ∉ x}. Die Antinomie besteht nun in der Bedingung R ∈ R 

⇔ R ∉ R. Diese ist in der 3-wertigen-Logik jedoch erfüllt, wenn man als Wahrheitswert 

„unbestimmt“ wählt.42 

Es zeigt sich allerdings, dass ein 3-wertiges wie auch n-wertiges Logiksystem 

ungeeignet ist, die bekannten Antinomien der naiven Mengenlehre zu umgehen. 

Konventioneller Weise wird die Inkonsistenz der Mengenlehre durch Einschränkungen – wie 

etwa im Axiomensystem von Zermelo-Fraenkel – behoben; eine grundsätzlich andere 

Möglichkeit wäre die Inkonsistenz nicht mehr in der klassischen Prädikatenlogik zu 

betrachten, sondern stattdessen in mehrwertigen Logiken. Für diesen Versuch wurde jedoch 

bereits gezeigt, dass zumindest endlich-wertige Logiken dafür nicht geeignet sind, da in ihnen 

Analoga zur Russellschen Antinomie ableitbar sind. 43 

Neben dem Zweiwertigkeitsprinzip basiert die binäre Logik noch auf einer zweiten 

Annahme, die – im Gegensatz zum Zweiwertigkeitsprinzip – mehrwertige Logiken ebenfalls 

treffen, nämlich das Extensionalitätsprinzip. Dieses Prinzip besagt in seiner 

aussagenlogischen Fassung, dass der Wahrheitswert einer zusammengesetzten Aussage nur 
                                                 
42 Vgl. Malinkowski S 309ff 
43 Vgl. Gottwald 1989 S 291ff 
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von den Wahrheitswerten der atomaren Bestandteile der Aussage abhängt. Auf dieses Prinzip 

verzichtet auch die mehrwertige Logik nicht, insbesondere nimmt es auch die beschriebene 3-

wertige Logik des Lukasiewicz an.44 

Die Entstehung der mehrwertigen Logikkonzeption, die mit den Arbeiten von 

Lukasiewicz und der polnischen Logikerschule begann45, ist eng mit der Entstehung des so 

genannten Intuitionismus verbunden. Zwar bedeutet die Kritik am Prinzip vom 

ausgeschlossenen Dritten und äquivalenter Formulierungen noch keineswegs den Übergang 

zu mehrwertigen Logiksystemen, doch erschüttert diese Kritik das Prinzip der Zweiwertigkeit 

von logischen Aussagen, welches das Fundament der binären Logik bildet.46 Durch die Kritik 

am Zweiwertigkeitsprinzip sind mehrwertige Logiksysteme und der Intuitionismus also 

verbunden; doch reicht diese Verbundenheit nicht weiter, wie schon das Prinzip der doppelten 

Negation zeigt, welches in mehrwertigen Systemen gültig ist – wie noch zu sehen sein wird – 

und das die intuitionistische Schule verneint. 

Die 3-wertige-Logik bietet also allerhand Möglichkeiten, die über die der binären Logik 

hinausreichen; nun soll untersucht werden, ob sie auch Vagheit adäquat modellieren kann. 

Kehren wir zum Paradoxon des Sorites zurück, um diese Untersuchungen 

durchzuführen. Das Problem in der binären Logik war der abrupte Übergang von Nicht-

Haufen zu Haufen – der Wechsel von Nicht-Haufen zu Unbestimmt-Haufen jedoch und von 

diesem zu Haufen muss ebenso abrupt erfolgen, da ein kontinuierlicher Übergang mittels drei 

Wahrheitswerten nicht möglich ist. Doch mit der Annahme einer Vagheit zweiter Stufe ist die 

Angabe einer solchen scharfen Grenze zwischen H(k), k∈N ist wahr, unbestimmt oder falsch 

nicht sinnvoll. Mit der Annahme der Vagheit zweiter Stufe fällt also die Hoffnung, Vagheit 

mittels einer 3-wertigen-Logik adäquat modellieren zu können.47 

3.5.2 Fuzzy Logik 

In der fuzzy Logik stehen unendlich viele unterschiedliche Wahrheitswerte zur Verfügung, 

um eine Aussage zu valutieren. Zwischen den Extrema „Ein Korn ist kein Haufen“ (¬H(1)) 

und „100.000 Körner sind ein Haufen“ (H(100.000)) können also beliebig viele verschiedene 

Abstufungen getroffen werden; die Wahrheitswertverteilung kann sogar stetig verlaufen. H(n) 

stehe – wie bereits eingeführt – für das Prädikat „n Körner sind ein Haufen“ und |H(n)| für 

                                                 
44 Vgl. Gottwald 1989 S 1f 
45 Vgl. Gottwald 1989 S 5ff 
46 Vgl. Sinowjew 1986 S 34ff 
47 Vgl. Buldt 70f 
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dessen Wahrheitswert. Dann kann man eine Wahrheitswertverteilung bestimmen, die 

folgender Relation genügt: 

0 = |H(1)|<|H(2)|<|H(3)|<…<|H(n)| = 1 für sehr große n∈N 

Die Widersprüche im Paradoxon des Sorites ergeben sich durch den mehrfach 

angewandten Kettenschluss: Wenn eine Ansammlung kein Haufen ist und man gibt ein Korn 

dazu (und ein Korn ist auch kein  Haufen), dann ist das Ganze auch kein Haufen, denn die 

Differenz von nur einem Korn kann nicht den Unterschied zwischen Haufen und Nicht-

Haufen ausmachen. Dieser Schluss mag richtig sein, wenn man zu einem Korn ein zweites 

hinzufügt oder aber auch wenn man zu zwei Körnern ein drittes hinzufügt. Aber wie man 

sieht kann man durch das mehrmalige Hinzufügen nur eines einzelnen Kornes eine 

Ansammlung von 100.000 Körnern erzeugen, die sicherlich Haufen genannt werden kann. 

Versucht man dieses Problem mittels der fuzzy Theorie zu lösen, muss also ein unscharfer 

Folgerungsbegriff eingeführt werden, der die Widersprüchlichkeit des Sorites umgeht. 

Wichtig für unscharfes Schließen ist die Formalisierung des Implikationsbegriffes, also 

das Definieren eines Operators, der die unscharfe wenn-dann Beziehung passend interpretiert 

und in eine formale Rechenvorschrift setzt, um den Kern des unscharfen Schlussfolgerns zu 

bilden. 

Konjunktion und Disjunktion werden in unendlich-wertigen Logiken einheitlich mittels 

min bzw. max Operatoren definiert. Für die Subjunktion gibt es keine einheitliche Definition 

in den unendlich-wertigen Logiken: Verschiedene Logiker haben verschiedene Definitionen 

des Implikationsbegriffes gegeben. Hier soll zuerst auf die Definition Zadehs näher 

eingegangen werden, bevor andere Definitionen diverser Logiker kurz angedeutet werden. 

Um die Subjunktionsdefinition Zadehs besser nachvollziehen und verstehen zu können, 

betrachten wir zuerst den scharfen Implikationsbegriff und äquivalente Formen48: 

A → B ⇔ ¬A ∨ B 

 ⇔ (¬A ∨ B) ∧ (¬A ∨ A) da |ξ∧1|=|ξ| und |¬ξ∨ξ|=1 

 ⇔ ¬A ∨ (B ∧ A) 

 ⇔ (A ∧ B) ∨ (¬A ∧ 1) da |¬ξ∧1|=|¬ξ| 

                                                 
48 Vgl. Jaanineh / Maijohann 1996 S 181 
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Mittels den bekannten Formalisierungen der Konjunktion und Disjunktion in der fuzzy 

Logik, der Festlegung der Negation durch |¬A| = 1-|A| und der Relation min(1-ξ, 1) = 1-ξ 

ergibt sich nun für die unscharfe Implikation in der fuzzy Logik: 

|A → B| := max(min(|A|,|B|), 1-|A|)49 

Wobei hier die Betragsstriche wieder den Wahrheitswert der Aussage symbolisieren. 

Wie bereits erwähnt, wählen verschiedene Logiker diverse unterschiedliche 

Definitionen für den Implikationsoperator; im Folgenden werden der Vollständigkeit halber 

vier weitere Definitionen präsentiert50: 

Mamdani Implikation: |A→B| := min(|A|,|B|) 

Kleene Implikation: |A→B| := max(1-|A|,|B|) 

Reichenbach Implikation |A→B| := 1-|A|+|A|⋅|B| 

Lukasiewicz  Implikation |A→B| := min(1,1-|A|+|B|) 

Dies sind verschiedene Definitionen für denselben sprachlichen Ausdruck „Wenn A, 

dann B“ – was alle gemein haben ist, dass sie das wichtige Gebot der zweiwertigen Logik 

erfüllen, dass ein Schluss von etwas Wahrem zu etwas Falschem falsch ist: Gilt |A|=1 und 

|B|=0, hat eine Implikation A→B unter sämtlichen angeführten Implikationsoperatoren den 

Wahrheitswert 0, ist also falsch. Allgemeiner gesprochen gilt stets, dass der Schluss von 

etwas Wahrerem auf etwas weniger Wahres mit einem verringerten Wahrheitswert valutiert 

wird; umgekehrt wird der Schluss von etwas weniger Wahrem auf etwas Wahreres mit einem 

höheren Wahrheitswert bewertet. Je höher der Verlust an Wahrheitswert im Übergang von 

Antezedens zur Konklusion also ist, desto niedriger ist der Wahrheitswert, der dem gesamten 

Konditionalsatz zugesprochen wird.51 

Betrachten wir nun den Schluss: Eine Ansammlung von einem Korn ist kein Haufen, 

das Hinzufügen eines Kornes macht daraus auch keinen Haufen, also ist eine Ansammlung 

von 2 Körnern kein Haufen; also formal: ¬H(1) ∧ (¬H(1)→¬H(2)) ergo ¬H(2). Dass eine 1-

Korn-Ansammlung kein Haufen ist, wollen wir als völlig wahr bewerten, also |¬H(1)|=1. Wie 

valutiert man nun den Wahrheitswert von ¬H(2)? Das ist tatsächlich ein schwerwiegendes 

Problem und eine Bewertung wird oftmals nicht eindeutig sein können; eine Bewertung ist oft 

subjektiv und in einer gewissen Form beliebig, vor allem bei der Bewertung von nicht 
                                                 
49 Vgl. Jaanineh / Maijohann 1996 S 182 
50 Vgl. Jaanineh / Maijohann 1996 S 184 
51 Vgl. Sainsbury 1993 S 63ff 
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ganzzahligen Wahrheitswerten. Mathematische Sätze beispielsweise können hingegen oft 

eindeutig und objektiv als wahr oder falsch bewertet werden, etwa „5 ist eine Primzahl“ ist 

wahr oder „2 teilt 3“ ist falsch. Ebenso lassen sich empirische Sätze finden, denen eindeutig 

ein bestimmter Wahrheitswert zugeordnet werden kann; das Problem der Bewertung besteht 

hauptsächlich für ungewisse und vage Aussagen, oder für Aussagen, deren Wahrheitswert 

(noch) nicht exakt gekannt wird. 

Was man nun bei der Bewertung von H(2) beachten muss, sind folgende zwei 

Bedingungen: ¬H(2) soll weniger wahr sein als ¬H(1) und es soll nicht viel weniger wahr 

sein. Dies sind äußerst vage Bedingungen, die vielerlei Wahrheitswertzuordnungen 

ermöglichen. Wir wollen uns hier nicht auf eine fixe Zuweisung eines exakten 

Wahrheitswertes beschränken; sei |¬H(2)|=1-ε und ε>0 möglichst klein. Der Unterschied im 

Wahrheitswert der beiden Aussagen ¬H(1) und ¬H(2) kann infinitesimal klein gewählt 

werden, sodass die beiden Aussagen grob geschätzt und oberflächlich betrachtet gleich wahr 

oder falsch sind. Der winzige Unterschied im Wahrheitswert lässt aber auch den 

Wahrheitswert des Konditionales ¬H(1)→¬(2) schrumpfen, weshalb der ganze Schluss 

¬H(1) ∧ ( ¬H(1)→¬H(2) ) ergo ¬H(2) nicht folgerichtig im klassischen Sinn ist, und die 

Konklusion ¬H(2) einen geringeren Wahrheitswert besitzen kann als seine Prämissen. Dies 

ist ein neuer Ansatz, das Problem des Sorites zu lösen: der modus ponens erhält nicht den 

Wahrheitsgrad der Prämissen, das heißt die Schlussfolgerung des Arguments ¬H(n) ∧ 

(¬H(n)→¬H(n+1)) ergo¬H(n+1) kann einen geringeren Wahrheitswert haben als jede der 

Prämissen.52 Anschaulich gesprochen kann man also den Schluss folgendermaßen 

interpretieren: „Eine n-Korn-Ansammlung ist kein Haufen, also ist eine (n+1)-Korn-

Ansammlung auch kein Haufen“ ist ein Schluss, der eine Konklusion mit verringertem 

Wahrheitswert impliziert. Zieht man also mehrmals Schlüsse der Form 

¬H(n)∧(¬H(n)→¬H(n+1)) ergo ¬H(n+1) verliert jedes Mal die Konklusion an 

Wahrheitswert. Nach einer geeigneten Anzahl an Schlüssen ist der Wahrheitswert der 

Konklusion näher an 0 als an 1. Dieser Übergang von der Gültigkeit des Schlusses hin zu 

seiner Ungültigkeit wird mittels der Methoden der fuzzy Inferenz elastisch modelliert. Darin 

besteht der Vorteil des approximativen Schließens der fuzzy Theorie: Der stetige Übergang 

von wahr zu falsch und umgekehrt ermöglicht die elastische Modellierung von 

Problemstellungen. 

                                                 
52 Vgl. Sainsbury 1993 S 63ff 
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Die fuzzy Theorie löst also nicht die Frage, ab wann nun eine Ansammlung an Körnern 

ein Haufen ist. Vage Termini bleiben vage und auch die fuzzy Theorie kann diese nicht 

präzisieren. Vagheit ist ein Phänomen, das sich nicht beheben lässt – zumindest nicht mit den 

hier vorgestellten Methoden. Was die fuzzy Theorie zur Lösung des Problems beitragen kann, 

ist die adäquate Modellierung des Phänomens Vagheit. 

Ein abrupter Wechsel zwischen Haufen und Nicht-Haufen erschien unserer sprachlichen 

Auffassung zufolge als nicht sinnvoll; doch zwei- und dreiwertige Logiken implizieren 

abrupte Wechsel, weshalb wir sie als nicht adäquat zur Lösung des Sorites zurückwiesen. 

Mittels der fuzzy Theorie gelingt es nun, diesen Wechsel von Nicht-Haufen zu Haufen 

kontinuierlich verlaufen zu lassen, das Problem also stetig und elastisch zu modellieren, was 

unserem natürlichen Sprachempfinden von Vagheit am nächsten kommt. Die Modellierung 

des Problems ist nicht eindeutig; es lässt sich nicht präzise bestimmen, welchen 

Wahrheitswert welche Ansammlung bekommen sollte – dies ist eine Folgerung der Vagheit 

des Terminus „Haufen“. Was eine Modellierung jedoch stets beinhaltet ist der kontinuierliche 

Übergang zwischen Haufen und nicht-Haufen; wie dieser Übergang numerisch genau verläuft 

ist nebensächlich. 

3.5.3 Problemstellungen, die sich durch den Versuch, Vagheit 
zu formalisieren, ergeben 

Bisher wurde versucht Paradoxien, die sich durch den Sorites ergeben, mittels der fuzzy 

Logik zu beseitigen. Es gelang uns, einen kontinuierlichen Übergang von Nicht-Haufen zu 

Haufen zu konstruieren, der unserem natürlichen Verständnis des Terminus Haufen sehr nahe 

kam. Wir diskutierten somit die Vorteile, die ein fuzzy theoretischer Zugang zu dem Problem 

gewährt; nun soll auf deren Nachteile verwiesen werden. 

Bei der Analyse von Paradoxien wie dem Sorites ergeben sich meist drei alternative 

Lösungsansätze: Die erste mögliche Lösung ist die Verwerfung der Prämissen des paradoxen 

Arguments. Ein weiterer möglicher Lösungsansatz bietet sich durch das Akzeptieren der 

Schlussfolgerung der Paradoxie. Die dritte Möglichkeit, das Paradoxon zu umgehen, ergibt 

sich durch eine Ablehnung des logischen Folgerns.53 

Alle drei Lösungsmöglichkeiten erscheinen als wenig wünschenswert. Die Alternative, 

die Prämissen zu verwerfen, gestaltet sich schwierig.54 Die Schlussfolgerung zu akzeptieren, 

also zu akzeptieren, dass durch das Anhäufen vieler einzelner Körner kein Haufen entstehen 

                                                 
53 Vgl. Sainsbury 1993 S 45 
54 Vgl. Sainsbury 1993 S 47ff 
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kann, erscheint ebenso wenig sinnvoll. Als dritte Alternative bleibt somit nur die Ablehnung 

des logischen Folgerns in seiner bisherigen gewohnten Form für Argumente vom Typus des 

Sorites. Dies ist der Lösungsansatz, der in dieser Arbeit verfolgt wurde und auch zu einer 

Vermeidung der Paradoxie führte. 

Es muss jedoch hervorgehoben werden, welche Schwachstellen dieser Ansatz mit sich 

bringt. Dem Sorites liegt der modus ponens als Schlussform der klassischen Logik zugrunde; 

diesen abzulehnen, führt zu schwerwiegenden Problemen. Im in dieser Arbeit beschriebenen 

Lösungsansatz wurde die Gültigkeit des modus ponens – einem zentralen Prinzip des 

logischen Folgerns – angezweifelt. Der modus ponens ist der Schluss p ∧ (p → q) ergo q. Ihn 

anzuzweifeln bringt eine Reihe von neuen Problemstellungen mit sich und wird folglich auch 

wenn möglich vermieden – doch ist es genau diese Aufgabe des modus ponens, die die 

Widersprüchlichkeit des Sorites vermied und uns zu dem diskutierten Lösungsansatz führte. 

Untersucht man nun die Anforderungen an den modus ponens in der zweiwertigen Logik, 

erkennt man, dass die Aufgabe desselben in der mehrwertigen Logik der fuzzy Theorie 

durchaus mit der Beibehaltung der Schlussregel innerhalb der binären Logik vereinbar ist.55 

Sind Sätze entweder vollkommen wahr oder vollkommen falsch, bewahrt der modus ponens 

seine Gültigkeit.  

Betrachten wir hierzu ein Beispiel: Der Wahrheitswert der Aussagen p und p→q sei 

gleich 1. Mittels dem modus ponens zieht man nun den Schluss p ∧ (p→q) ergo q – q hat also 

dank gültigem modus ponens den Wahrheitswert 1. Ohne den Schluss ergibt jedoch folgende 

Überlegung denselben Wahrheitswert für q: sei zunächst der Wahrheitswert von q unbekannt, 

also |q| = x wobei x∈[0,1]. Wenn |(p→q)| = 1 gelten soll und die Implikation der fuzzy Logik 

verwendet wird, ergibt sich (da |p|=1 gilt): 1 = |(p→q)| = max( min(1, x), 0 ); also muss 

min(1,x)=1 gelten. Dies impliziert nun x = |q| = 1. Das heißt, man kann innerhalb der fuzzy 

Theorie, falls sowohl die Aussage p als auch die Implikation (p→q) vollkommen wahr sind, 

folgern, dass auch q vollkommen wahr sein muss – ganz wie es der modus ponens implizieren 

würde. Es ist also unmöglich, dass die Prämissen des Arguments vollkommen wahr und die 

Konklusion vollkommen falsch ist – was die Definition des logischen Folgerns in der binären 

Logik erfüllt. Im Fall von nicht ganzzahligen Wahrheitswerten von p und (p→q) verliert der 

modus ponens an Gültigkeit, doch taucht dieser Fall in der klassischen Logik nicht auf. 

Die fuzzy Theorie löst also die Paradoxie des Sorites mit dem Preis der Aufgabe des 

modus ponens als Schlussregel des logischen Folgerns; diese Aufgabe lässt sich jedoch 

                                                 
55 Vgl. Sainsbury 1993 S 64 
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verteidigen mit der Begründung, dass der modus ponens nur aufgegeben werden muss, falls er 

auf Aussagen mit nicht ganzzahligen Wahrheitswerten angewandt werden soll. Für 

ganzzahlige Wahrheitswerte bleibt er weiterhin gültig, denn der modus ponens ist genau dann 

gültig, wenn [p∧(p→q)]→q eine Tautologie ist, also bei jeder beliebigen 

Wahrheitswertverteilung wahr ist, was folgende Wahrheitswerttabelle zeigt: 

 

Aussage p q p p→q p ∧ (p→q) [p ∧ (p→q)] → q 

       

Wahrheitswert |p| |q| |p| max(min(|p|,|q|),1-

|p|) 

min( |p|, |p→q|) max( 

min(|p∧(p→q)|, 

|q|), 1-|p∧(p→q)| ) 

       

Verteilung 0 0 0 1 0 1 

 0 1 0 1 0 1 

 1 0 1 0 0 1 

 1 1 1 1 1 1 

 

Dieser Kompromiss, dass der modus ponens im allgemeinen Fall aufgehoben wird, 

jedoch als Spezialfall seine Gültigkeit bewahrt, lässt sich – meiner Ansicht nach – akzeptieren 

in Anbetracht der Möglichkeiten, die diese Aufgabe mit sich bringt. 
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3.6 Ein wahrscheinlichkeitstheoretischer Zugang zur 
Ungewissheit 

„The only satisfactory description of uncertainty is probability.“56 

Mit diesen Worten beschreibt Dennis Lindley in seinem Aufsatz „The probability 

approach to the Treatment of Uncertainty in Artificial Intelligence and Expert Systems“ seine 

These von der Unumgänglichkeit der Wahrscheinlichkeitstheorie; er geht noch weiter und 

behauptet: 

„that the calculus of probabilities is adequate to handle all situations involving 
uncertainty.“57 

 

Der übliche Zugang zum Wahrscheinlichkeitskalkül ist ein axiomatischer; dieser hat 

den Vorteil, nicht darauf einzugehen, was Wahrscheinlichkeit und Zufall bedeuten; die 

Ergebnisse sind deshalb von der jeweiligen Interpretation unabhängig. 

Der russische Mathematiker Andrei Nikolajewitsch Kolmogorow publizierte 1933 eine 

Schrift mit dem Titel „Grundbegriffe der Wahrscheinlichkeitsrechnung“, in der er den Begriff 

der Wahrscheinlichkeit mit dem eines Maßes verband.58 Die Maßtheorie bietet heute die 

Grundlage zum modernen Zugang zur Wahrscheinlichkeitstheorie. 

Mathematisch werden Wahrscheinlichkeiten als eine Funktion P auf Ereignissystemen 

definiert, welche folgenden Axiomen genügt: 

1.) 0≤P(E)≤1 für alle Ereignisse E 

2.) P(S) = 1 falls S ein sicheres Ereignis ist 

3.) P(A∪B) = P(A)+P(B), falls A ∩ B = {} 

Mit diesen Eigenschaften ist die Wahrscheinlichkeitsfunktion P nun ein Maß.59 

Es wurde bereits angedeutet, dass dieser axiomatische, maßtheoretische Zugang 

unabhängig von speziellen Interpretationen der Wahrscheinlichkeit ist; ein anderer Zugang ist 

der durch subjektive Wahrscheinlichkeit. Hier werden Wahrscheinlichkeiten als numerische 

Grade des Vertrauens in den Eintritt von Ereignissen E, die vom Informationsstand H 

                                                 
56 Lindley 1987 S 17 
57 Lindley 1987 S 17 
58 Vgl. Hochkirchen S 129ff 
59 Vg. Viertel 1997 S 4ff 
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abhängen, interpretiert; die Notation hierfür ist P(E|H) – dies entspricht also dem subjektiven 

Glauben, dass E eintritt, wenn man H weiß.  

Wahrscheinlichkeit ist hier ein Maß des Vertrauens bzw. Glaubens in ein Ereignis, 

gegeben die Information H, das folgenden Eigenschaften genügen muss: 

1.) 0≤P(E|H)≤1 

2.) P(E1∨E2|H) = P(E1|H)+P(E2|H) für zwei sich gegenseitig ausschließende Ereignisse 

E1, E2 

3.) P(A∧B|H) = P(B| A∧H)⋅P(A|H), falls das Ereignis A schon eingetreten ist und somit 

der Informationsstand A∧H ist.60 

Diese drei Eigenschaften könnten auch als Axiome eines Wahrscheinlichkeitskalküls 

dienen, da aus ihnen die gesamte Theorie ableitbar wäre. Man verzichtet jedoch gemeinhin 

darauf, da die Kolmogorowschen Axiome einfacher und intuitiver sind.61 

3.7 Lindleys Kritik an der fuzzy Theorie 

Wie eingangs erwähnt, ist Lindley der Auffassung, der Wahrscheinlichkeitskalkül sei der 

einzige Weg, Ungewissheit adäquat zu modellieren. Einen großen Vorteil der 

Wahrscheinlichkeitslehre sieht er in dem einfachen und intuitiven Fundament, welches die 

Axiome bilden. Anderen Wegen, Ungewissheit zu modellieren, unterstellt Lindley unsauber 

und ohne axiomatische Basis zu sein.62 Wenigstens im Bezug auf die fuzzy Theorie sehe ich 

diesen Einwand nicht; die Theorie der unscharfen Mengen ist ebenfalls präzise formuliert, 

und trotz ihrer Beschäftigung mit unscharfen Objekten ist sie selbst scharf definiert. Eine 

axiomatische Basis mag fehlen, doch kann dies auch an dem jungen Alter der Theorie liegen. 

Lofti Zadeh kritisierte die Behauptung, allein mittels Wahrscheinlichkeitsrechnung 

Ungewissheit modellieren zu können, und entgegnete, es sei eine gravierende Einschränkung 

der probabilistischen Methoden, dass diese nicht mit der durchdringenden Vagheit der 

Information zu Recht kommen.63 

Lindley konterte diesen Einwänden mit der Aufforderung zu demonstrieren, dass ein 

Problem, gelöst mittels fuzzy Theorie, nicht mittels eines probabilistischen Zuganges besser 

gelöst werden könne. Diese Aufforderung ist äußerst pragmatischer Natur, denn sie richtet 
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62 Vgl. Lindley 1987 S 19f 
63 Vgl. Zadeh 1983 
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sich auf die tatsächliche Lösbarkeit von Problemen.64 Weiters impliziert sie nicht, dass alle 

Probleme, die Unsicherheit behandeln, durch die Wahrscheinlichkeitstheorie gelöst werden 

können; die Behauptung Lindleys besagt nur, dass sie es besser tun kann als die Alternativen. 

Im Folgenden sollen Beispiele Lindleys erörtert werden, mit denen gezeigt werden soll, 

wie typische Aufgaben der fuzzy Theorie mittels der Wahrscheinlichkeitstheorie behandelt 

werden. 

Als Beispiel einer unscharfen Aussage behauptete Zadeh „Berkeleys Bevölkerung ist 

über 100.000.“; diese Aussage ist unscharf aufgrund des impliziten Verständnisses von „über“ 

– es bedeutet etwas mehr als 100.000 aber nicht viel mehr. Lindleys probabilistischer Zugang 

wäre nun eine Wahrscheinlichkeitsaussage über eine Quantität, die bestimmt werden kann. 

(Im Allgemeinen sollten alle Quantitäten stets evaluierbar sein, da man diese auch verwenden 

will.) Eine mögliche bestimmbare Quantität wäre die Antwort des zuständigen Amtes für 

Statistik, Wahlen und Einwohnerwesen, welche X genannt sei. Die 

Wahrscheinlichkeitsaussage der Behauptung ist nun P(X|H), wobei H das Wissen desjenigen 

ist, der die Behauptung aufgestellt hat. 

Alle vagen Aussagen dieser Gestalt können auf analoge Weise 

wahrscheinlichkeitstheoretisch interpretiert werden. Mehr Vorsicht ist bei Aussagen vom 

Typus „Heinrich ist jung.“ geboten; Heinrich ist hier eine wohldefinierte Person, sein Alter 

hingegen ein vages Prädikat X. Die Aussage hängt davon ab, wie und wo sie gemacht wird: 

Auf dem Universitätscampus bedeutet sie, Heinrich wäre um die 20, in einem Seniorenheim 

hingegen würde ein junger Heinrich vielleicht um die 60 sein. Folglich ist die Information 

vom Kontext äußerst relevant. Ohne Informationen über den Kontext der Aussage wird man 

P(X|H) abschätzen müssen. 65 

 

Als weiteren Einwand gegen die fuzzy Theorie brachte Lindley das Argument, diese sei 

ein komplizierteres Konzept als die Wahrscheinlichkeitslehre. Fuzzy Logik führt zu 

nichtlinearem Programmieren und beinhaltet große Komplexität in der Sprache. Im Gegensatz 

dazu ist der Wahrscheinlichkeitskalkül äußerst einfach, benötigt er doch nur drei einfache 

Axiome. Im Sinne der Methode des Willhelm von Ockham (Ockhams Rasiermesser) sollte 

nun die Wahrscheinlichkeitslehre gegenüber der fuzzy Theorie favorisiert werden, da sie nicht 

                                                 
64 Vgl. Lindley 1987 S 19ff 
65 Vgl. Lindley 1987 S 20 
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nur alle Probleme, die sich mittels der fuzzy Logik behandeln lassen, gleich oder besser löst, 

sondern darüber hinaus auch noch einfacher ist.66 

Ein letztes Argument gegen die fuzzy Theorie wird aus der Frage abgeleitet, warum 

man Ungewissheit untersucht. Abgesehen vom intellektuellem Vergnügen, das Lindley außer 

Acht lässt, ergibt sich ihm nur eine einzige mögliche Antwort: um Entscheidungen trotz 

Ungewissheit zu fällen. Eine axiomatische Aufbereitung der Theorie des 

Entscheidungstreffens zeigt nach Savage, dass nur eine Maximierung des erwarteten Nutzens 

eine befriedigende Prozedur darstellt. Diese benutzt allerdings Wahrscheinlichkeiten und nur 

diese sind die benötigten Quantitäten für den Prozess des Entscheidungstreffens.67 

Gerade im Bereich der Anwendungen – auch in der Theorie der Entscheidungen – 

führte die fuzzy Theorie allerdings in den letzten Jahren einen großen Siegeszug, weshalb die 

Aktualität und Gültigkeit dieses letzten Arguments, warum der Wahrscheinlichkeitskalkül der 

fuzzy Theorie als Theorie der Ungewissheit vorzuziehen ist, verloren ging. 

                                                 
66 Vgl. Lindley 1987 S 22 
67 Vgl. Lindley 1987 S 22 
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4 Ein geometrischer Zugang zur fuzzy Theorie 
Die Einführung unscharfer Mengen in dieser Arbeit erfolgt analog zur Defnition Lofti Zadehs 

aus dem Jahr 1965 mittels Zugehörigkeitsfunktionen, also Abbildungen μA von der 

Grundmenge X in das Einheitsintervall [0,1]. Der Nachteil dieses Zuganges liegt in den 

Schwierigkeiten, die er bei der Veranschaulichung einer unscharfen Menge bereitet: Eine 

unscharfe Menge A ist die Menge aller Zahlenpaare (x; μ(x)), also 

A := { }1)(0,)(;( ℜ∈≤≤∈ xXxxx μμ  

Betrachten wir zur Veranschaulichung die unscharfe Menge aller Jugendlichen. Als 

erstes muss eine Zugehörigkeitsfunktion μ definiert werden; diese Definition wird nicht 

eindeutig bestimmt sein, da „Jugendlicher“ ein vager Begriff ist und man nicht zweifelsfrei 

feststellen kann, wer unter diesen Terminus fällt. Seien also beispielsweise alle 14- bis 

18jährigen zweifelsfrei jugendlich; weiters seien Kinder ab zwölf und junge Erwachsene bis 

21 zu einem gewissen Grad jugendlich – dann könnte die fuzzy Menge J aller Jugendlicher 

folgendermaßen definiert sein: 

J = {(12jähriger,0.5), (13jähriger,0.75), (14jähriger,1), (15jähriger,1),  

(16jähriger,1), (17jähriger,1), (18jähriger,1), (19jähriger,0.8),(20jähriger,0.4), 

(21jähriger,0.2)} 

Die Lesart dieser Notation gestaltet sich wie folgt: Das Element (x,y) bedeutet, dass ein 

Mensch mit dem Alter x einen Zugehörigkeitswert y zur Menge aller Jugendlichen besitzt – 

also hat beispielsweise ein 15jähriger einen Zugehörigkeitswert 1, hingegen ein 20jähriger nur 

eine Zugehörigkeit von 0.4. Elemente, die nicht in dieser Aufzählung aufscheinen, also unter 

12jährige und über 21jährige, haben eine Zugehörigkeitswert von 0 und werden deshalb nicht 

aufgezählt. 

Dieser Zugang ist wenig anschaulich und bietet somit Platz für Kritik, wie es unter 

anderem Dennis Lindley tut, wenn er einen der Vorzüge der Wahrscheinlichkeitslehre 

gegenüber der fuzzy Theorie in der Einfachheit des Wahrscheinlichkeitskalküls und seiner 

Axiome sieht.68 

Dem gibt Bart Kosko in seinem Artikel „Fuzziness vs. Probability“ Abhilfe, indem er 

eine neue Interpretation unscharfer Mengen einführt; diese Interpretation ist stark geometrisch 

und deshalb äußerst anschaulich – zumindest im Spezialfall einer nur zwei- bzw. 

                                                 
68 Vgl. Lindley 1987 S 22 
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dreielementigen Grundmenge X. Die Geometrie unscharfer Mengen bezieht sich auf die 

Grundmenge X={x1,x2,x3,…,xn} und den Bildbereich [0,1] der Zugehörigkeitsfunktionen. 

Ausgangpunkt der Interpretation ist die Menge aller unscharfen Teilmengen von X, der so 

genannten fuzzy Potenzmenge F(2X). Diese fuzzy Potenzmenge wird durch einen n-

dimensionalen Einheitswürfel veranschaulicht, also einem Hyperwürfel mit n Kanten der 

Länge 1. Eine fuzzy Menge ist nun ein Punkt in diesem n-dimensionalen Hyperwürfel.69 An 

dieser Stelle wird ersichtlich, dass die Ordnung der Grundmenge X wesentlich ist: 

Identifiziert man die Potenzmenge der n-elementigen Grundmenge X mit dem n-

dimensionalen Einheitswürfel, ist die Ordnung von X insofern wesentlich, da sie sich auf die 

Geometrie des Einheitswürfels überträgt. Betrachtet man beispielsweise die Grundmenge 

{Hütte, Haus, Palast}, kann deren unscharfe Potenzmenge mit einem dreidimensionalen 

Einheitswürfel identifiziert werden, bei der Zugehörigkeitswerte von Hütte jeweils auf der X-

Achse des Würfels, von Haus auf der Y-Achse und von Palast auf der Z-Achse angenommen 

werden. Ist die Reihenfolge der Elemente in der Grundmenge eine andere, etwa {Haus, Hütte, 

Palast} erkennt man, dass die entsprechenden Zugehörigkeitswerte auf anderen Achsen 

aufgetragen werden müssen. Die Ordnung der Grundmenge ist also wesentlich und sei von 

nun an stets festgelegt. 

Die Stärke dieses Zuganges liegt – wie bereits erwähnt – in der Anschaulichkeit, die sie 

im Spezialfall einer zwei- oder dreielementigen Grundmenge X bietet; anders als Bart Kosko 

selbst sehe ich jedoch starke Veranschaulichungsschwierigkeiten bei beliebigen 

Grundmengen X, insbesondere unendlichdimensionalen: Der menschliche Geist ist nicht in 

der Lage sich einen n-dimensionalen Einheitswürfel bei n≥4 zu visualisieren; noch weniger ist 

er in der Lage, sich unendlichdimensionale Hyperwürfel vorzustellen. 

Bart Kosko sieht in der Anschaulichkeit der Geometrie der fuzzy Mengen selbst eines 

der größten Argumente für die fuzzy Theorie.70 Infolge der obigen Argumentation gegen eine 

allgemeine Vorstellbarkeit dieser geometrischen Interpretation sehe ich in ihr kein starkes 

Argument für die fuzzy Theorie. Im Spezialfall einer zweielementigen Grundmenge 

X={x1,x2} bietet die geometrische Interpretation jedoch eine große Hilfe im Verstehen der 

fuzzy Theorie und ihrer Theoreme; deshalb wollen wir uns im Folgenden auf diesen Fall 

konzentrieren: 

Die fuzzy Potenzmenge F(2X) der Menge X={x1,x2} ist also ein Quadrat der Länge 1. 

Jede fuzzy Menge der Grundmenge X ist ein Punkt in diesem Quadrat; die Eckpunkte des 
                                                 
69 Vgl. Kosko 1990 S 216ff 
70 Vgl. Kosko 1990 S 216 
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Quadrats entsprechen den klassischen scharfen Mengen {}, {x1}, {x2} bzw. {x1,x2}. Die 

klassische Potenzmenge entspricht also der Menge sämtlicher Eckpunkte. Fasst man die 

Punkte des Quadrats als zweidimensionale Vektoren auf, kann man die vier Ecken 

folgendermaßen schreiben: {(0,0), (1,0), (0,1), (1,1)}. Diese vier Vektoren sind also die 

Elemente der klassischen Potenzmenge 2X={ {}, {x1},{x2},X }. Identifiziert man nun diese 

Menge mit der Menge der vier Vektoren, deutet die 1 im i-ten Argument des Vektors die 

Präsenz des Elementes xi, i=1,2 an und die 0 die Absenz. 

Analog gelingt die Identifizierung des Punktes A=(ξ,ω) mit der fuzzy Menge A={(x1,ξ), 

(x2,ω)}, das heißt der Wert an der i-ten Stelle des Punktvektors korrespondiert mit der 

Zugehörigkeit des Elements xi zu A, die durch das Bild der Zugehörigkeitsfunktion μA(xi) 

dargestellt wird. 

Betrachten wir zur Veranschaulichung dieser Interpretation nochmals die in diesem 

Kapitel bereits eingeführte unscharfe Menge J aller Jugendlicher: Diese bestand aus zehn 

Zahlenpaaren. Mittels der neu eingeführten geometrischen Interpretation einer fuzzy Menge 

lässt sich diese Menge J nun als ein zehndimensionaler Vektor schreiben, der an der i-ten 

Koordinate jeweils den Zugehörigkeitswert des i-ten Zahlenpaares trägt. 

J = (0.5, 0.75, 1, 1, 1, 1, 1, 0.8, 0.4, 0.2) 

Ein Vorteil dieser Notation ist sicherlich die verkürzte Darstellung; was jedoch verloren 

geht, ist die Information, was denn den Zugehörigkeitswert trägt. In der alten Darstellung 

mittels Zahlenpaaren ließ sich sofort erkennen, dass (13jähriger, 0.75) dafür steht, dass ein 

Dreizehnjähriger zu 0.75 ein Jugendlicher ist. Mit der neuen Darstellung kann man nur 

erkennen, dass die zweite Koordinate des Vektors J die Zugehörigkeit 0.75 besitzt. Es muss 

also extern vermerkt werden, was jede einzelne Koordinate bedeutet, für wen oder was sie 

also steht. 

Zum besseren Verständnis wollen wir nun noch klassische Mengen betrachten, etwa 

C={2,3} und D={1,2,3,4}; die Grundmenge für diese beiden Mengen sei X={1,2,3,4}. Dann 

lassen sich die beiden Mengen in der neuen Schreibweise als vierdimensionale 

Mengenvektoren auffassen; man erhält also: C = (0, 1, 1, 0) bzw. D = (1, 1, 1, 1) 

 

Im Laufe des Kapitels wird ersichtlich werden, dass auf fuzzy Mengen verschiedene 

Operationen und Maße definiert werden können, die nur von den Zugehörigkeitswerten 

abhängen; es ist also durchaus zweckdienlich, nur diese bei der Definition einer Menge 
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anzugeben. Weiters bietet die neue Darstellung die Möglichkeit einer geometrischen 

Darstellung, wie im Folgenden gezeigt werden soll. 

 

Unten stehende Abbildung 1 visualisiert die neue geometrische Interpretation für fuzzy 

Mengen auf der zweielementigen Grundmenge X={x1,x2}, was uns die Darstellung der fuzzy 

Potenzmenge als Quadrat erlaubt: Die Eckpunkte des Quadrats sind die scharfen Mengen 

{x1}, {x2}, X sowie die leere Menge {}. Der Punkt A=(1/3, 3/4) ist die fuzzy Menge 

{(x1,1/3), (x2,3/4)}. 

 

 

Abbildung 1 

 

Mittels dieser Interpretation wird auch ein geometrischer Zusammenhang bei 

Komplementbildung, Durchschnitt und Vereinigung ersichtlich: Der Durchschnitt zweier 

Mengen wird durch paarweise Minimumbildung und die Vereinigung durch paarweise 

Maximumbildung berechnet. Folgendes Beispiel veranschauliche dies: 
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Dies wird durch folgende Abbildung dargestellt: 

 

 

Abbildung 2 

 

Als Spezialfall wird ersichtlich, dass der Mittelpunkt M=(0.5, 0.5) als einziger Punkt 

mit seinem Komplement übereinstimmt; ferner gilt: 

CCC MMMMMM ∪=∩==  

Es mag eine praxisrelevante Heuristik sein, fuzzy Mengen mittels scharfer Mengen zu 

approximieren, indem man Punkte im Inneren des Quadrats durch den nächsten Eckpunkt 

ersetzt. Dies mag oft sinnvoll sein, da es bedeutend einfacher ist, von einem leeren Glas zu 

sprechen, als von einem fast leeren oder von einer schönen Frau als von einer ziemlich 

schönen Frau. Doch findet diese Abschätzungsheuristik ihre Limitationen, je näher man dem 

Mittelpunkt kommt; je näher man dem Mittelpunkt kommt, desto schwieriger wird es, die 

fuzzy Menge durch den nächstgelegenen Eckpunkt zu ersetzen, da für die Mitte alle 

Eckpunkte gleich weit entfernt sind, und somit keiner sinnvoll ausgewählt werden kann.71 

4.1 Maße für fuzzy Mengen 

Wie bereits festgehalten wurde, sind verschiedene Punkte des Quadrats verschieden unscharf 

– die Extrema sind die Eckpunkte, welche klassischen scharfen Mengen entsprechen und der 

Mittelpunkt, der als am unschärfsten bezeichnet wurde. Dies selbst ist eine äußerst vage 

Behauptung, da die Relation „ist schärfer als“ unscharf ist; dem soll jetzt Abhilfe geschaffen 

werden, indem ein Maß eingeführt wird, Unschärfe zu quantifizieren. Bevor dies getan wird, 
                                                 
71 Vg. Kosko 1990 S 219f 
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soll noch ein natürlicher Abstandbegriff definiert werden: Man definiere das Maß M auf der 

Grundmenge X={x1,x2,…,xn} mittels  

∑
∈

=
Xx

A xµAM )(:)(  

M entspricht dann der Kardinalität bzw. Mächtigkeit72 einer Menge; im Spezialfall einer 

scharfen Menge gilt μA(x) = 1 für alle x∈A, woraus M(A) = |A| im Sinne der Definition von 

Mächtigkeit in der klassischen Mengenlehre gilt. Eine klassische dreielementige Menge hat 

also die Mächtigkeit drei. Wie berechnet sich nun die Mächtigkeit der hier eingeführten 

Menge aller Jugendlichen? Diese wurde mittels der geometrischen Interpretation 

folgendermaßen definiert: 

J = (0.5, 0.75, 1, 1, 1, 1, 1, 0.8, 0.4, 0.2) 

Die Mächtigkeit von J – M(J) – berechnet sich nach Definition als Summe sämtlicher 

Koordinaten, also  

M(J) = 0.5+0.75+1+1+1+1+1+0.8+0.4+0.2 = 7.65. 

 

Die Mächtigkeit M(A) einer Menge A entspricht darüber hinaus der so genannten l1 

Metrik, welche wir mit d bezeichnen wollen und folgendermaßen definiert ist: 

|)()(|:),(:),( 1 xµxµBAlBAd BA
Xx

−== ∑
∈

 

Den Zusammenhang zwischen der Kardinalität M und der l1 Metrik zeigt folgender 

kurzer Beweis73: 

{}),(|)()(||0)(|)()( 1
{} AlxµxµxµxµAM

Xx
A

Xx
A

Xx
A =−=−== ∑∑∑

∈∈∈

 

Wie man aus der Topologie, einer mathematischen Theorie, die sich mit Abständen 

beschäftigt, weiß, ist Metrik ein verallgemeinerter Abstandbegriff; die l1 Metrik, die das oben 

eingeführte Maß M induziert, entspricht dem Abstand zweier Punkte, indem man stets entlang 

den Koordinatenachsen entlang von einem Punkt zum zweiten wandert und dabei die 

Entfernung misst. M(A) entspricht somit dem Abstand, den der Punkt A zu der linken unteren 

Ecke hat, wenn man zur Messung der Entfernung stets entlang der Koordinatenachsen 

wandert. 

                                                 
72 Vgl. Jaanineh / Maijohann 1996 S 76f 
73 Vgl. Kosko 1990 S 220f 
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Durch das obige M gelingt nun die Definition des so genannten fuzzy Entropiemaßes E, 

das die Unschärfe einer Menge quantifiziert:74 

)(
)(:)( C

C

AAM
AAMAE

∪
∩

=  

Aufgrund der besonderen geometrischen Eigenschaften der Durchschnitts- und 

Vereinigungsbildung von A und AC, wie sie in Abbildung 2 visualisiert wurden, ergibt sich 

folgende geometrische Deutung des Entropiemaßes: M(A ∩ AC) entspricht dem Abstand von 

A zum nächst gelegenen Eckpunkt; M(A ∪ AC) entspricht dem Abstand von A zum weitest 

entfernt gelegenen Eckpunkt. 

Das fuzzy Entropiemaß unterstreicht nochmals den Zusammenhang zwischen der 

Aufgabe des Prinzips vom ausgeschlossenen Dritten und der fuzzy Logik: Wird das Prinzip 

vom ausgeschlossenen Dritten angenommen, sind M(A ∪ AC) = n und M(A ∩ AC) = 0 bei 

einer n-elementigen Grundmenge. Für das fuzzy Entropiemaß ergibt sich somit 0/n also 

E(A)=0 für eine klassische Menge. Für dem Mittelpunkt M ergab sich nach obigen 

Rechnungen M∪MC = M∩MC, also E(M)=1. Aufgrund der Monotonie des Maßes M und der 

Eigenschaft, dass A ∩ AC stets in A ∪ AC enthalten ist, also A ∩ AC ⊆ A ∪ AC gilt, ergibt 

sich M(A ∩ AC)≤M(A ∪ AC) und folglich 0≤E(A)≤1 für alle Mengen A. Folglich spricht man 

von einer unschärferen Menge, falls das fuzzy Entropiemaß E größer ist. 

Zur Veranschaulichung betrachten wir zunächst die klassische Menge C = {x∈Ν| x<5}; 

das Komplement dieser Menge ergibt sich durch die Darstellung CC = [x∈Ν| x≥5}. Der 

Durchschnitt dieser beiden Mengen ist die leere Menge mit Mächtigkeit 0; die Vereinigung ist 

die Menge der natürlichen Zahlen – deren Mächtigkeit wird ℵ0 (Aleph 0) genannt. Das 

Entropiemaß der klassischen Menge C ist also E(C)=0/ℵ0 was definitionsgemäß 0 ist. Das 

Entropiemaß von C als klassischer Menge ist also gleich 0. 

Betrachten wir nun die fuzzy Mengen A = (0.5, 0.4) und B = (0.7, 0.9). Die 

Komplemente ergeben sich durch AC = (0.5, 0.6) und BC = (0.3, 0.1). Die Entropiemaße der 

beiden Mengen sind folglich: 
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74 Vgl. Kosko 1990 S 222f 
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Die Relation „schärfer als“ lässt sich also durch das Entropiemaß E formalisieren; 

Mengen mit hohem Entropiemaß (das maximal gleich 1 sein kann) werden als besonders 

unscharf eingestuft, Mengen mit niedrigem Entropiemaß als besonders scharf. Wie bereits an 

diesem einfachen Beispiel deutlich wurde, ist eine Menge unschärfer als eine andere, falls 

seine Zugehörigkeitsgrade näher bei 0.5 liegen. 

4.2 Teilmengigkeit 

Nach der Einführung der Inklusionsbeziehung für unscharfe Mengen durch Lofti Zadeh ist 

eine Menge A Teilmenge einer anderen Menge B oder nicht; die Relation ⊆ selbst ist scharf 

und nicht fuzzy. Betrachtet man allerdings Mengen, wird man oft sehen, dass die eine zu 

einem großen Teil in der anderen enthalten ist – jedoch nicht ganz. Für solche Fälle scheint es 

wenig adäquat – wenn man einmal die Wege der klassischen scharfen Mengenlehre verlassen 

hat – die Teilmengeneigenschaft scharf aufzufassen und nur zwischen ist-Teilmenge-von und 

ist-es-nicht zu unterscheiden. Aus diesem Grund wird das Teilmengigkeitsmaß S eingeführt, 

dass den numerischen Grad der Teilmengigkeit von A in B entspricht; das heißt: S(A,B) = 

Grad(A ⊆ B). Es ist unmittelbar evident, dass S folgende Eigenschaften haben soll: Ist A in B 

enthalten, soll S(A,B) = 1 gelten. Weiters soll S(A,B) = 0 sein, falls A kein gemeinsames 

Element mit B besitzt. Aus der Definition Zadehs75 folgt, dass max(0, μA(x)-μB(x)) = 0, falls x 

in B, jedoch nicht in A enthalten ist; max(0, μA(x)-μB(x)) > 0, falls x in A und B enthalten ist. 

Dies motiviert folgende Definition:76 
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Diese Definition ist wohldefiniert und stimmt für die Spezialfälle der alten 

Inklusionsrelation überein: Ist A ⊆ B nach der Definition Zadehs, gilt also μA(x)≤ μB(x) für 

alle x∈X, dann ist μA(x)-μB(x)) ≤ 0 und folglich max(0, μA(x)-μB(x)) = 0 für alle x∈X. Es gilt 

folglich S(A,B)=1-0=1, falls A ⊆ B. Hat umgekehrt A kein gemeinsames Element mit B, 

dann ist max(0, μA(x)-μB(x)) = 0, falls x∈B und max(0, μA(x)-μB(x)) = μA(x) falls x∈A. 

Daraus ergibt sich für S(A,B)=1-M(A)/M(A)=1-1=0. Zur Illustration dieses Sachverhalts 

betrachte man die klassischen Mengen C = {2,3} und D = {1,2,3,4}: Es gilt C⊆D. Das 

Teilmengigkeitsmaß berechnet sich nun wie folgt: 

                                                 
75 Vgl. Zadeh 1965 S 340 
76 Vgl. Kosko 1990 S 226f 
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Allerdings finden sich auch Elemente von D, die auch in C enthalten sind; es liegt also 

nahe eine gewisse Teilmengigkeit von D in C zu vermuten. Man ermittelt hierzu: 
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Man sieht also, das Konzept der unscharfen Teilmengigkeit lässt sich auch auf 

klassische Mengen anwenden, denn auch scharfe Mengen können zu einem gewissen Grad in 

anderen enthalten sein, aber eben nicht ganz so wie beispielsweise D teilweise in C enthalten 

ist. Betrachtet man nun die fuzzy Mengen A = (2/3, 1/4) und B = (1/3, 2/3), dann erhält man: 

11
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12/11
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Ebenso erhält man: 
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Die fuzzy Menge A ist also zum Grad 7/11 in der Menge B enthalten, während B in A 

zum Grad 7/12 enthalten ist; mit der Definition Zadehs einer scharfen Teilmengigkeit wäre 

weder A in B noch B in A enthalten gewesen, da für Teilmengigkeit jede Komponente des 

einen Mengenvektors kleiner oder gleich der Komponente des anderen Vektors hätte sein 

müssen, was bei den angeführten Mengen nicht der Fall ist. 
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Es zeigt sich nun ferner, dass 0 bzw. 1 die untere bzw. obere Schranke des 

Teilmengigkeitsmaßes von S ist; für sämtliche unscharfen Mengen A und B gilt somit: 

0≤S(A,B)≤1. 

 

In der klassischen Mengenlehre korrespondiert die Inklusion ⊆ mit der Subjunktion → 

vermöge der Festlegung: A ⊆ B genau dann wenn ∀x: x∈A → x∈B. Analoges gilt für das 

Teilmengigkeitsmaß S, das mit dem Lukasiewiczschen Subjunktor korrespondiert, falls 

M(A)=1.77 
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SubjunktionLukasiewicz(A,B) entspricht hierbei der Subjunktion A → B nach Definition 

von Lukasiewicz78 

 

4.2.1 Das Teilmengigkeitsmaß in der geometrischen Deutung 

 

Betrachtet man die geometrische Visualisierung der fuzzy Potenzmenge von B in 

Abbildung 3 erkennt man, dass A Teilmenge von B ist, falls sich A innerhalb des Vierecks 

F(2B) befindet; intuitiv vermutet man, dass je näher sich ein Punkt A zum Viereck befindet, 

desto größer seine Teilmengigkeit S(A,B) sein sollte. 

                                                 
77 Vgl. Kosko 1990 S 227 
78 Vgl. Gottwald 1989 S 34 
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Abbildung 3 

 

Die Vorgehensweise zur Findung einer geometrischen Charakterisierung des 

Teilmengigkeitsbegriffs wird also eine metrische sein: Es bezeichne d(A,B) also den Abstand 

von A zu B, der mittels der l1 Metrik (sie sei von nun an wieder d genannt) berechnet wird. 

d(A,F(2B)) bezeichne den minimalen Abstand zwischen A und dem Viereck F(2B), also 

d(A,F(2B)) = min{d(A,B’)| B’∈F(2B)}. Das Element aus F(2B), welches A am nächsten liegt, 

sei mit B* bezeichnet, folglich gilt d(A,F(2B)) = d(A,B*). Mittels dieses Abstandes definieren 

wir nun:79 

)(
*),(1),(

AM
BAdBAS −=  

Berechnen wir nun zur Gewöhnung an die Definition die Teilmengigkeit von A in B auf 

diese neu eingeführte Weise, wobei A und B wieder wie folgt definiert sind: A = (2/3, 1/4) 

und B = (1/3, 2/3). Wie bereits in Abbildung 3 ersichtlich, ist der minimale Abstand von A zu 

F(2B) die waagrechte Verbindung von A zum Rechteck der fuzzy Potenzmenge von B; es ist 

somit B* = (1/3, 1/4). Der minimale Abstand von A zu F(2B) berechnet sich folglich durch:  

3/1|4/14/1||3/13/2||)()(|*),( * =−+−=−= ∑
∈Xx

BA xµxµBAd  

                                                 
79 Vgl. Kosko 1990 S 228ff 
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Womit für das Teilmengigkeitsmaß – analog zur Berechnung mittels der bisherigen 

Definition – folgt: 

11/7
12/11
3/11

)(
*),(1),( =−=−=

AM
BAdBAS  

 

An dieser Stelle muss nun gezeigt werden, dass die obige Definition sinnvoll ist, das heißt, 

dass sie mit der bisherigen Definition des Teilmengigkeitsmaßes aus dem vorhergehenden 

Kapitel übereinstimmt. 

Sei nun B*∈F(2B) zu A am nächsten gemäß der l1 Metrik. Dann gilt μA(x)≥μB*(x) für 

alle x∈X aufgrund der Orthogonalität im Hyperwürfel der fuzzy Potenzmenge F(2B). Wir 

unterscheiden nun zwei Fälle: 

Fall 1: μA(x)=μB*(x) 

Dies gilt genau dann, wenn μA(x)≤μB(x) für alle x und A somit gleich B* ist. Dies impliziert 

max(0, μA(x)-μB(x)) = 0 für alle x∈X. 

Fall 2: μA(x)>μB*(x) 

Dies gilt genau dann, wenn μA(x)>μB(x), da andernfalls B näher als B* wäre. Somit gilt: 

max(0, μA(x)-μB(x)) = μA(x)-μB(x). 

Aus den beiden Fällen gemeinsam folgt, dass max(0, μA(x)-μB(x)) = |μA(x)-μB*(x)|. 

Summiert man diese Gleichung über alle x∈X, erhält man: 

))()(,0max(|)()(|*),( * xµxµxµxµBAd BA
XxXx

BA −=−= ∑∑
∈∈

 

Aufgrund dieser Gleichung kann man die entsprechenden Ausdrücke in den beiden 

verschiednen Definitionen des Teilmengigkeitsmaßes S vertauschen, und ihre Äquivalenz 

wurde bewiesen.80 

 

Für B*, der Teilmenge von B, die A am nächsten liegt, lässt sich noch eine weitere 

Charakterisierung finden: Da μB(x)=μB*(x) gilt, falls μA(x)>μB(x), folgt 

min(μA(x),μB(x))=μB*(x) für alle x in X. Ferner gilt μA(x)=μB*(x), falls μA(x)<μB(x), und 

somit min(μA(x),μB(x))=μB*(x) für alle x. Aufgrund der Definition des Durchschnitts mittels 

                                                 
80 Vgl. Kosko 1990 S 231 
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der Minimumbildung, folgt B* = A ∩ B. Die Kommutativität des Durchschnitts impliziert 

ferner B* = A ∩ B = A*. 

 

Aufgrund der Definition des Abstandes d gilt d(A,B) = M(A) – M(B), falls μA(x)≥μB(x) für 

alle x in X.81 Da nun A ∩ B ⊆ A (und daher μA∩B(x) ≤ μA(x) für alle x) folgt, dass d(A,B*) = 

d(A, A∩B) = M(A) – M(A∩B). Setzt man dies in die obige Definition des 

Teilmengigkeitsmaßes ein, erhält man: 
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Also insgesamt:  
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Dieses wichtige Resultat soll nun in weiterer Folge Grundlage diverser Theoreme und 

Interpretationen sein, die zu wesentlichen Resultaten in dieser Arbeit führen werden. 

4.3 Das Entropie-Teilmengigkeitstheorem 

Aus der eben eingeführten Formel zur Berechnung der Teilmengigkeit S wird ersichtlich, dass 

diese rein als Funktion von Kardinalitäten M definiert werden kann; ebenso wurde das fuzzy 

Entropiemaß nur durch Kardinalitäten definiert. Dies motiviert die Suche nach einem 

Zusammenhang zwischen dem fuzzy Entropiemaß E und dem Teilmengigkeitsmaß S. Dieser 

Zusammenhang ergibt sich, wenn man den Ausdruck S(A∪AC,A∩AC) eingehender 

untersucht: 

                                                 
81 Vgl. Kosko 1990 S 231 
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Dies ergibt somit das Entropie-Teilmengigkeitstheorem 

S(A∪AC,A∩AC) = E(A), 

welches den Zusammenhang beschreibt zwischen der fuzzy Entropie einer Menge, das den 

Grad der Unschärfe einer Menge quantifiziert, und der Teilmengigkeit von A∪AC in A∩AC. 

Das Theorem besagt also, dass die Unschärfe einer Menge in direktem Verhältnis steht zu 

dem Grade, in welchem die Vereinigung A∪AC in A∩AC – einer ihrer eigenen Teilmengen – 

enthalten ist. Plakativ gesprochen gibt also der Grad, in welchem das Ganze in einem seiner 

Teile enthalten ist, die Unschärfe der Menge an.82 

4.4 Teilmengigkeit und Wahrscheinlichkeit 

Die im vorhergehenden Kapitel 4.2.1 hergeleitete Formel S(A,B) = M(A∩B)/M(A) für den 

Grad der Teilmengigkeit der Menge A in B stimmt mit der Definition der bedingten 

Wahrscheinlichkeit P(B|A) überein83: 
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Die bedingte Wahrscheinlichkeit P(B|A) entspricht der Wahrscheinlichkeit P des Ereignisses 

B, falls A zutrifft – diese Interpretation ist jedem seit seiner Schulzeit an geläufig und gehört 

zu den Grundlagen der Wahrscheinlichkeitstheorie. Mittels der obigen Überlegungen gelingt 

nun eine neue Interpretation der bedingten Wahrscheinlichkeit. S(A,B) wurde eingeführt als 

der Grad des Enthaltenseins der Menge A in der Menge B. In der klassischen Mengenlehre 

gibt es nur die beiden Möglichkeiten A⊆B oder A⊄B. Viele Mengen stimmen jedoch mit 

anderen nur teilweise überein, aber nicht ganz. Für Mengen, die fast gleich sind, aber nicht 

ganz, nutzen wir die fuzzy Theorie zur Modellierung dieses „fast gleich“. 

                                                 
82 Vgl. Kosko 1990 S 237f 
83 Vgl. Viertel 1997 S 12f 
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Bleiben wir für einen Moment in der klassischen Mengenlehre und betrachten die 

Mengen A = {2} und B = {2,4,6}, dann gilt A ⊆ B und somit S(A,B) = 1. Stellen wir uns nun 

den Wurf eines Würfels vor und betrachten zwei Ereignisse: Ereignis A entspreche der 

erscheinenden Augenzahl 2 nach dem Wurf, Ereignis B entspreche dem Ausgang, dass die 

gewürfelte Augenzahl gerade sei. Man schreibt hierfür A = {2} und B = {2,4,6}. Wie groß ist 

nun die Wahrscheinlichkeit P(B|A), also dass die gewürfelte Augenzahl gerade ist, falls sie 2 

ist? Die Antwort ist selbstverständlich 1. Ist die Augenzahl 2, dann ist sie auch gerade. In 

diesem einfachen Fall stimmen der Grad der Teilmengigkeit und die bedingte 

Wahrscheinlichkeit überein. Die obige Argumentation impliziert ferner die Übereinstimmung 

der beiden Größen auch in allen anderen Fällen. Betrachten wir das umgekehrte Beispiel 

P(A|B), also die Wahrscheinlichkeit, dass die Augenzahl 2 ist, falls sie zumindest gerade ist; 

sie berechnet sich mittels P(A|B)=P(A∩B)/P(B)=P(A)/P(B)=(1/6)/(1/2)=1/3. Analog 

berechnet man die Teilmengigkeit von B in A, also S(B,A)=M(A∩B)/M(B)=M(A)/M(B)=1/3. 

Wieder stimmen bedingte Wahrscheinlichkeit und Teilmengigkeit überein – wie es der obige 

Beweis auch impliziert.  

Durch die obige Deduktion der Äquivalenz von Teilmengigkeit und bedingter 

Wahrscheinlichkeit gelingt also eine völlig neue Sichtweise und Interpretation der 

Wahrscheinlichkeit. Anstelle der abstrakten Interpretation „Wahrscheinlichkeit von B falls A 

eintritt“ gelingt die anschaulichere – weil geometrische – Interpretation von „Grad der 

Teilmengigkeit von B in A“. Da der Terminus „Wahrscheinlichkeit“ kein anschaulicher 

Begriff ist, wird intuitives Verständnis und Vorstellung in der Wahrscheinlichkeitstheorie 

sehr schwierig, da man nur mit abstrakten Größen rechnet. Dies mag sicherlich ein Vorteil der 

Interpretation durch Teilmengigkeit sein, da diese zumindest für einfache Beispiele eine gute 

Anschaulichkeit gewährleistet und sogar Skizzen ermöglicht: 
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Abbildung 4 

 

Nehmen wir nun an, A und B seien klassische, scharfe Mengen, A habe a Elemente und 

B sei gleich der Grundmenge X = {x1,x2,…,xn}. Dann ergibt sich für S(A,B) die so genannte 

relative Häufigkeit: 
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Mittels des Gesetzes der großen Zahl, das davon ausgeht, dass die relative Häufigkeit eines 

Ereignisses für große n gegen einen fixen Wert strebt, definiert man oft Wahrscheinlichkeit 

als idealisierte relative Häufigkeit84. 

4.4.1 Theoreme der fuzzy Theorie als Axiome der 
Wahrscheinlichkeitslehre 

Es gelang uns nun wichtige Begriffe und Formeln der Wahrscheinlichkeitstheorie innerhalb 

der Theorie der unscharfen Mengen herzuleiten. Im Folgenden gehen wir noch weiter und 

deduzieren aus der fuzzy Theorie drei Theoreme, von denen Dennis Lindley behauptet, sie 

könnten als Axiome der Wahrscheinlichkeitslehre fungieren. 

Wie bereits in Kapitel 4.2 ersichtlich wurde, gelten für alle fuzzy Mengen A,H folgende 

Relationen: 

0≤S(H,A)≤1 und S(H,A) = 1, falls H ⊆ A 

                                                 
84 Vgl. Viertel 1997 S 5 



50 

Aufgrund der Definition der Kardinalität M für unscharfe Menge ergibt sich auf evidente 

Weise folgende Additivitätseigenschaft: M(A∪B) = M(A)+M(B)-M(A∩B). Mittels dieser 

Relation sowie der Definition des Teilmengigkeitsmaßes S und des Distributivgesetzes der 

Mengenlehre lassen sich nun zwei wichtige Gleichungen deduzieren: 
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Und weiters: 
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Insgesamt konnten nun folgende 3 Beziehungen deduziert werden: 

Konvexität:  0≤S(H,A)≤1 und S(H,A) = 1, falls H ⊆ A 

Addition: S(H,A1∪A2) = S(H,A1)+S(H,A2)-S(H,A1∩A2) 

Multiplikation: S(H,A1∩A2) = S(H,A1) S(A1∩H,A2) 

Identifiziert man nun wieder S(H,A) mit P(A|H) ergeben sich folglich die drei Regeln (vgl. 

Kapitel 3.6), von denen Dennis Lindley postuliert: 

“From these three rules, perhaps modiefied slightly, all of the many, rich and wonderful 
results of the probability calculus follow. They may be described as the axioms of 
probability.”85 

                                                 
85 Lindley 1987 S 18 
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Dies ist ein beachtliches Resultat: Da innerhalb der fuzzy Theorie drei Theoreme abgeleitet 

werden konnten, mit denen man – wenn man sie als Axiome definiert – die 

Wahrscheinlichkeitslehre aufbauen kann, impliziert dies, dass die gesamte 

Wahrscheinlichkeitslehre als Folgerung der fuzzy Theorie betrieben werden könnte. 
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5 Zusammenhang zwischen Wahrscheinlichkeitslehre und 
fuzzy Theorie 

Der Diskurs, ob die Wahrscheinlichkeitslehre ausreicht, sämtliche Arten der Ungewissheit 

adäquat zu modellieren, also in der Lage ist, als einzige Theorie der Ungewissheit zu 

fungieren, – wie es Befürworter der Wahrscheinlichkeitstheorie wie Dennis Lindley 

postulieren – wird oft mit Fragen erweitert, wie: Ist Ungewissheit dasselbe wie Zufall? 

Reichen unsere Begriffe der Wahrscheinlichkeit aus für unsere Vorstellungen von 

Ungewissheit? 

Die Vermutung, Wahrscheinlichkeitslehre und fuzzy Theorie seien verschiedene 

Formulierungen desselben Problems, liegt nahe, wenn man die beiden Kalküle oberflächlich 

vergleicht und erkennt, dass beide im Wertebereich zwischen 0 und 1 operieren. Doch bereits 

konzeptionell erkennt man gewichtige Unterschiede in den beiden Theorien. 

Die fuzzy Theorie beschreibt Vagheit; sie misst, zu welchem Grad ein Ereignis eintritt. 

Die Wahrscheinlichkeitslehre untersucht die Ungewissheit, ob ein Ereignis eintritt.86 Dies 

sind zwei fundamental verschiedene Arten von Ungewissheit und es stellt sich bereits a priori 

die Frage, warum eine Theorie beide Arten von Ungewissheit adäquat modellieren können 

soll. 

Wenn der Wetterbericht von einer 50%igen Chance spricht, dass es morgen regnet, ist 

es heute also noch ungewiss, wie das Wetter morgen sein wird. Vielleicht regnet es, vielleicht 

nicht – die Wahrscheinlichkeit für das eine wie das andere liegt bei 50%. Am nächsten Tag, 

wenn man aus dem Fenster sieht und das Wetter beobachtet, sieht man, ob es regnet oder 

nicht. Eine Wahrscheinlichkeitsaussage macht hier keinen Sinn mehr, weil es nicht mehr 

ungewiss ist, ob es regnet oder nicht. Die Wahrscheinlichkeit eines Regenschauers spiegelt 

also die Ungewissheit wider, ob dieses Ereignis in der Zukunft eintritt oder nicht. Anders 

verhält sich die Frage, ob die wenigen Tropfen, die zum Boden fallen, tatsächlich schon 

Regen genannt werden sollen oder nur Nieseln. Hierbei hilft es nicht, abzuwarten, bis das 

Nieseln bzw. der Regen vorbei ist, um die Frage zu klären, was das sei. Die Frage, ab wann 

Nieseln tatsächlich Regnen ist, ist eine Frage unabhängig von der tatsächlichen Realisierung 

desselben; es ist eine Frage, die auf Vagheit, einer speziellen Art von Ungewissheit, abzielt 

und nicht sinnvoll mittels Wahrscheinlichkeiten beantwortet werden kann. 

 

                                                 
86 Vgl. Kosko 1990 S 213 
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5.1 Das Coxsche Theorem 

Vertreter der Wahrscheinlichkeitstheorie wie der englische Statistiker und Bayesianer Dennis 

Lindley oder der Amerikaner Edwin Thompson Jaynes trennen den 

Wahrscheinlichkeitskalkül streng von jeglichem nicht klassischen Logiksystem wie 

insbesondere der fuzzy Logik. Jaynes war einer der ersten, der die Wahrscheinlichkeitslehre 

als Verallgemeinerung der aristotelischen Logik betrachtete.87 Diese Vertreter sind es auch, 

die oftmals das Coxsche Theorem als Argument für die Wahrscheinlichkeitslehre verwenden; 

dieses wiederum wird oft falsch interpretiert bzw. aus diesem werden oft falsche 

Konsequenzen gezogen. Das Theorem von Cox besagt: Jedes Glaubensmaß ist isomorph zu 

einem Wahrscheinlichkeitsmaß.88 Das heißt, dass jedes Glaubensmaß auf ein 

Wahrscheinlichkeitsmaß zurückgeführt werden kann. Dennis Lindley zieht daraus die 

Konsequenz: 

“The message is essentially that only probabilistic descriptions of uncertainty are 
reasonable”89 

Doch die Annahmen der klassischen aristotelischen Logik sind teilweise problematisch, 

wenn man das Theorem von Cox als Argument gegen nicht klassische Systeme verwendet. 

Das Theorem zeigt nur, dass, falls Glauben derart definiert wird, wie es die Annahmen des 

Theorems vorgeben, die Wahrscheinlichkeitslehre ein legitimer Kalkül zur Behandlung von 

Glaubensgraden ist. Aber es wird nicht gezeigt, dass die Wahrscheinlichkeitslehre die einzig 

adäquate Methode ist, Ungewissheit zu formalisieren.90 

5.2 Fuzzy Theorie als Extension der 
Wahrscheinlichkeitslehre? 

Es gelang uns in Kapitel 4.4 innerhalb der fuzzy Theorie Beziehungen zu deduzieren, die als 

Axiomensystem eines Wahrscheinlichkeitskalküls dienen können. Die 

Wahrscheinlichkeitstheorie ist folglich innerhalb der fuzzy Theorie ableitbar. Von einem 

klassisch binären metatheoretischen Standpunkt betrachtet, kann dies zu zwei verschiedenen 

Konsequenzen führen: Erste mögliche Konsequenz wäre die logische Äquivalenz der fuzzy 

Theorie und des Wahrscheinlichkeitskalküls; dies ist der Fall, falls auch aus der 

Wahrscheinlichkeitslehre die fuzzy Theorie deduzierbar ist. Dann wären die beiden Theorien 

nur verschiedene Sichtweisen und Herangehensweisen, doch in ihrer Anwendbarkeit und 

                                                 
87 Vgl. Bretthorst 
88 Vgl. Colyvan 2004 S 8 
89 Lindley 1982 S 1 
90 Vgl. Colyvan 2004 S 11 
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Aussagekraft gleichwertig. Die zweite Möglichkeit wäre – sollte die fuzzy Theorie nicht aus 

der Wahrscheinlichkeitslehre deduzierbar sowie die umgekehrte Deduktion jedoch möglich 

sein. – die fuzzy Theorie eine Extension der Wahrscheinlichkeitslehre wäre und diese als 

Anwendung besäße. 

 

Wie bereits im Zuge dieser Arbeit ersichtlich gemacht wurde, gelten der Satz vom 

Widerspruch und das wohlbekannte Prinzip tertium non datur aus der klassischen Logik nicht 

in der fuzzy Theorie; das heißt: A∧¬A ist kein Widerspruch und A∨¬A ist keine Tautologie 

in der fuzzy Logik – hingegen sind sie es in der klassischen. Diese Prinzipien fanden auch 

Einzug in die verschiedensten Theorien, die auf der klassischen Logik und Mengenlehre 

basieren – wie zum Beispiel in die Wahrscheinlichkeitslehre. Im Wahrscheinlichkeitskalkül 

gilt stets, dass ein Ereignis A eintritt oder nicht; eine dritte Möglichkeit ist ausgeschlossen, 

also P(A∨¬A) = 1. Ferner ist es unmöglich, dass ein Ereignis A eintritt und zugleich nicht 

eintritt, also formal P(A∧¬A) = 0. Dies ist ein grundlegender Unterschied, der es prima vista 

unwahrscheinlich zu machen scheint, dass Wahrscheinlichkeitslehre und fuzzy Theorie 

insofern äquivalent sind, dass sich jedes Maß der fuzzy Theorie als Wahrscheinlichkeitsmaß 

schreiben lässt und umgekehrt. Vor Augen sollte man sich hierbei halten, dass die fuzzy 

Theorie als Extension der binären Logik das Gesetz vom ausgeschlossenen Dritten als 

Spezialfall beinhaltet – jedoch nur in Anwendung auf Aussagen mit Wahrheitswert 0 oder 1. 

Die Wahrscheinlichkeitslehre als auf der zweiwertigen Logik und Mengenlehre basierende 

Theorie ist hingegen nicht in der Lage das Prinzip vom ausgeschlossenen Dritten aufzugeben. 

Dieser Gedankengang ist es auch, der folgenden Beweisversuch des fuzzy Theoretikers 

Bart Kosko zu Grunde liegen scheint.  

Das Entropie-Teilmengigkeitstheorem aus Kapitel 4.3 impliziert, dass die 

Wahrscheinlichkeitstheorie nicht in der Lage ist, die fuzzy Theorie zu deduzieren. Um dies zu 

beweisen, zeigt Kosko, dass kein wahrscheinlichkeitstheoretisches Maß die Unschärfe einer 

Menge messen kann. 

Angenommen das Gegenteil wäre der Fall und jedes Maß der fuzzy Theorie lässt sich 

durch ein wahrscheinlichkeitstheoretisches Maß ausdrücken. Wir betrachten nun das fuzzy 

Entropiemaß E, das für jede Menge seine Unschärfe angibt. Der obigen Annahme zufolge 

existiert nun ein Wahrscheinlichkeitsmaß P, das mit E übereinstimmt, also P = E. Da P(X) = 1 

gilt, falls X die Grundmenge ist, kann P nicht identisch 0 sein. Somit existiert ein A, sodass 

P(A) = E(A)>0. Das Entropie-Teilmengigkeitstheorem impliziert nun  
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0<P(A) = E(A) = S(A∪AC,A∩AC), 

wobei S das Teilmengigkeitsmaß ist, das den Grad der Teilmengigkeit von A∪AC in 

A∩AC angibt. Da hier versucht wird, aus dem Wahrscheinlichkeitskalkül die Theorie der 

unscharfen Mengen abzuleiten, muss die klassische Mengenlehre angewandt werden, weshalb 

die Vereinigung A∪AC gleich ganz X ist und der Durchschnitt A∩AC gleich der leeren 

Menge ist. Somit gilt: 

0<P(A) = E(A) = S(A∪AC,A∩AC) = S(X,{}) 

Wenn S(X,{}) größer 0 sein soll, dann muss X in der leeren Menge enthalten sein. Dies 

ist aber nur der Fall, falls X selbst und somit auch A ⊆ X leer ist. Somit gilt 1 = P(X) = P({}), 

also dass das unmögliche Ereignis sicher ist, was zu einem Widersprich führt.91 

5.3 Wahrheitsfunktionalität 

Eine weitere Beweisführung zur Demonstration der Nichtäquivalenz von fuzzy Theorie und 

Wahrscheinlichkeitslehre kann über den Begriff der Wahrheitsfunktionalität erfolgen. Ein 

logischer Junktor heißt wahrheitsfunktional (oder extensional), falls der Wahrheitswert eines 

durch ihn gebildeten Satzes nur vom Wahrheitswert seiner Teilsätze abhängt. Mit anderen 

Worten heißt dies, dass sich der Wahrheitswert einer durch einen Junktor zusammengesetzten 

Aussage zweier Teilsätze nur durch die Wahrheitswerte dieser beiden Teilsätze bestimmen 

lässt. Ein logischer Kalkül heißt wahrheitsfunktional, falls jeder Junktor wahrheitsfunktional 

ist. 

Die fuzzy Logik ist wahrheitsfunktional,92 wie sich leicht einsehen lässt, wenn man die 

Definition der fuzzy logischen Junktoren betrachtet: 

Seien A,B fuzzy Aussagen und |A| bzw. |B| deren Wahrheitswerte, dann werden die 

Junktoren wie folgt berechnet: 

 |¬A| = 1- |A| 

 |A∧B| = min(|A|,|B|) 

 |A∨B| = max(|A|,|B|) 

 |A→B|  = max(min(|A|,|B|), 1-|A|) 

                                                 
91 Vgl. Kosko 1990 S 238 
92 Vgl. Luzzati  S 123 



56 

Aus dieser Darstellung folgt auf evidente Weise, dass sich der Wahrheitswert jeder 

Komposition zweier fuzzy Aussagen mittels der Wahrheitswerte der Teilsätze bestimmen 

lässt. 

Wahrheitsfunktionalität ist folglich eine Eigenschaft, die der fuzzy Theorie zukommt. 

Wären fuzzy Theorie und Wahrscheinlichkeitslehre äquivalent, müsste diese Eigenschaft auch 

für den Wahrscheinlichkeitskalkül gelten, das heißt die Wahrscheinlichkeitslehre müsste 

wahrheitsfunktional sein. 

Doch dies ist nicht der Fall, falls die Ereignisse nicht unabhängig im Sinne der 

Wahrscheinlichkeitstheorie sind. Sei P ein Wahrscheinlichkeitsmaß, dann heißen zwei 

Ereignisse A und B unabhängig, falls P(A∩B) = P(A)⋅P(B) gilt93. 

In diesem Falle lässt sich die Wahrscheinlichkeit des Durchschnittes als das Produkt der 

Wahrscheinlichkeiten der Teilereignisse bilden. Doch sind die Ereignisse nicht unabhängig, 

gilt dies nicht. 

Betrachten wir nun die Axiome der Wahrscheinlichkeitsrechnung, wie sie im Kapitel 

3.6 vorgestellt wurden. Das dritte Axiom lautet: P(A∪B) = P(A)+P(B), falls A∩B = {}. 

Innerhalb des Wahrscheinlichkeitskalküls kann eine Additivitätseigenschaft auch für 

Ereignisse mit nichtleerem Durchschnitt deduziert werden; die Wahrscheinlichkeit der 

Vereinigung berechnet sich durch94: 

P(A∪B) = P(A)+P(A)–P(A∩B) 

Es wird also ersichtlich, dass die Vereinigung zweier Ereignisse nicht 

wahrheitsfunktional ist, falls die Ereignisse nicht unabhängig sind. 

Ein Beispiel möge dies verdeutlichen: Sei A das Ereignis, dass bei einem Würfelwurf 

eine gerade Augenzahl erscheint und sei B das Ereignis, dass die zwei gewürfelt wird. 

Untersucht man nun die Wahrscheinlichkeit, dass eine gerade Augenzahl oder die zwei 

gewürfelt wird, berechnet sich diese wie folgt: 

P(A∪B) = P(A) + P(B) – P(A∩B) = 1/2 + 1/6 – 1/6 = 1/2, 

wobei gilt: P(A∩B) = 1/6 ≠ 1/12 = P(A)⋅P(B). 

 

                                                 
93 Vgl. Viertel 1997 S 15 
94 Vgl. Viertel 1997 S 12 
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Eine weitere Untersuchung verdeutlicht abermals das Nichtgelten der 

Wahrheitsfunktionalität des Wahrscheinlichkeitskalküls. Betrachten wir in Anlehnung an das 

berühmte Beispiel Jan Lukasiewicz’ die Aussage G „Ich werde Weihnachten nächsten Jahres 

in Graz sein.“ Die Aussage habe aus nahe liegenden Gründen in der fuzzy Theorie den 

Wahrheitswert 0.5 und in der Wahrscheinlichkeitslehre die Wahrscheinlichkeit 0.5. 

Aus der Wahrheitsfunktionalität eines Kalküls folgt insbesondere die Austauschbarkeit 

logisch äquivalenter Aussagen in zusammengesetzten Sätzen. Dies ist leicht einzusehen, wenn 

man bedenkt, dass sich der Wahrheitswert eines zusammengesetzten Satzes in extensionalen 

Systemen aus den Wahrheitswerten der Teilsätze ergibt; tauscht man also einen Teilsatz mit 

einem anderen aus, der jedoch denselben Wahrheitswert besitzt, kann dies an der Rechnung 

nichts ändern und der Wahrheitswert der gesamten Aussage bleibt konstant. 

Beispielsweise kann in der fuzzy Logik – als wahrheitsfunktionales Kalkül – die 

Aussage G mit ¬G vertauscht werden. Somit gilt: 

 |G∨¬G| = max(0.5,0.5) = 0.5 

 |G∨G| = max(0.5,0.5) = 0.5 

Die beiden Aussagen „Ich werde Weihnachten nächsten Jahres in Graz sein oder nicht.“ 

ist also innerhalb der fuzzy Logik äquivalent zur Aussage „Ich werde Weihnachten nächsten 

Jahres in Graz sein.“ Ob dies eine wünschenswerte Konsequenz ist, sei dahin gestellt – 

jedenfalls folgt diese aus der Wahrheitsfunktionalität und ist wesentliches Charakteristikum 

der fuzzy Logik. 

 

Wäre die Wahrscheinlichkeitslehre auch wahrheitsfunktional, müsste dies also auch 

dort gelten. Betrachten wir also die Wahrscheinlichkeiten der Aussagen G∨¬G bzw. G∨G: 

 P(G∨¬G) = P(G)+P(¬G)–P(G∧¬G) = 1 

 P(G∨G) = P(G)+P(G)-P(G) = P(G) = 0.5 

Die Wahrscheinlichkeitstheorie ist also nicht wahrheitswertfunktional und kann daher 

nicht äquivalent sein zur fuzzy Logik oder anderen mehrwertigen wahrheitsfunktionalen 

Logiksystemen.95 

 

                                                 
95 Vgl. Malinkowski 1993 S 327ff 
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6 Nachwort 
Der philosophische Nutzen der fuzzy Theorie wurde an Hand der Analyse des Paradoxons des 

Sorites ersichtlich gemacht. Dennoch drängte sich der Verdacht auf, ob man nicht auf diese 

verzichten kann, indem man alles, was mittels der fuzzy Theorie ausgedrückt wird, mittels des 

Wahrscheinlichkeitskalküls modelliert. Vor allem Vertreter der Wahrscheinlichkeitslehre wie 

Dennis Lindley postulieren diese Möglichkeit fuzzy theoretische Ansätze mittels der 

Wahrscheinlichkeitsrechnung zu lösen. Dass dies – zumindest im allgemeinen Fall – nicht 

möglich ist, zeigte die abschließende Diskussion. Während wir innerhalb der fuzzy Theorie 

Theoreme deduzieren konnten, die als Axiome eines Wahrscheinlichkeitskalküls dienen 

können, konnten wir dies im umgekehrten Fall nicht tun. Darüber hinaus zeigten 

Überlegungen im Kapitel 5, dass es fuzzy theoretische Maße gibt, die durch kein 

Wahrscheinlichkeitsmaß ausgedrückt werden können. Ferner konnte gezeigt werden, dass 

zwar die fuzzy Theorie extensional, also wahrheitsfunktional ist – hingegen ist es nicht die 

Wahrscheinlichkeitslehre. Wahrscheinlichkeitslehre und fuzzy Theorie sind folglich nicht 

äquivalente Theorien, die nur verschiedene Interpretationen und Herangehensweisen an 

dieselbe Grundidee wären.  

Dieser Schluss erscheint in Anbetracht unserer Analyse verschiedener Arten von 

Ungewissheiten als plausibel. Wir stellten fest, dass sich die Wahrscheinlichkeitslehre mit 

Ungewissheiten befasst, die von konzeptionell anderer Natur sind als die Ungewissheiten, mit 

der sich die fuzzy Theorie beschäftigt. Die Ungewissheit der Wahrscheinlichkeitsrechnung ist 

eine Ungewissheit, die sich auf die Unsicherheit zukünftiger Ereignisse bzw. die Unkenntnis 

gegenwärtiger oder vergangener Ereignisse bezieht. Hingegen rührt die Ungewissheit, die 

Gegenstand der fuzzy Theorie ist, von der Vagheit verwendeter Termini. In der fuzzy Theorie 

geht es also nicht darum, ob ein Ereignis eintritt oder nicht; in der fuzzy Theorie sind die 

Ereignisse, die sie behandelt, nicht scharf konzipiert sondern vage, was zu vollkommen 

anderen Problemstellungen führt als in der Wahrscheinlichkeitsrechnung. 
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